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Chapter 1

Introduction

In many medical studies both longitudinal and event history data are col-

lected for each patient. A well-known and broadly studied example is found

in AIDS research, where CD4 cell counts taken at different time points are

related to the time-to-death. Often such outcomes are separately analyzed.

However, in two particular settings a joint modeling approach is required.

First, when focus is on the event times and we wish to study the associa-

tion between the longitudinal responses and the risk for an event, where we

need to take into account the fact that the longitudinal response is also an

outcome generated by the same subject. Second, when focus is on the lon-

gitudinal outcome and events cause dropout. Under specific circumstances

the dropout process needs to be accounted in the analysis in order to obtain

valid inferences for the longitudinal outcome.

In the first case, when one is interested in the event time outcome, a

standard approach is to use only the last available measurement of the lon-

gitudinal biomarker. However, it is evident that by doing so we discard

1



2 Introduction

valuable information. A better alternative is to apply the time-dependent

Cox model. This model assumes that the time-dependent covariate pro-

cess is exogenous. According to Kablfeisch and Prentice [1] the exogenous

(also known as external) covariates are the ones for which the path at any

future time point t is not affected by the occurrence of an event at time

s ≤ t. This requirement applies in several time-dependent covariates such

as environmental factors. But it is clear that biomarkers do not fulfill this

requirement. Evidently, biomarkers are the output of the stochastic process

generated by the patient himself and as such its value at any time t is influ-

enced by the occurrence if an event at s ≤ t. To account for these features

of biomarkers the framework of joint model has been proposed (Faucett and

Thomas [2] and Wulfsohn and Tsiatis [3]). In this approach we estimate the

joint distribution of the survival and longitudinal processes. Unlike in the

multivariate approach, where we have to interpret the estimates for each lon-

gitudinal measurement separately, the joint modeling approach allows to get

more insight in the nature of the relation between the two analyzed processes

since it assumes some underlying process for the longitudinal measures.

When the focus is on the longitudinal outcome one can distinguish be-

tween different types of processes that may cause missingness in that re-

sponse. Little and Rubin [4] classified the nature of missing data mechanism

as Missing Completely At Random (MCAR) when the probability of dropout

does not depend on either the observed or unobserved measurements, Miss-

ing At Random (MAR), when the probability of dropout depends on the

observed data, but not on the unobserved measurements and Missing Not

At Random (MNAR), when the probability of missing depends on unob-

served and possibly also observed data. For example when a patient does
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not come for a visit because she is on vacations the missing data mechanism

is probably MCAR. On the other hand, when a doctor advises a patient to

leave the study based on a previously observed longitudinal measurement,

the mechanism is MAR. Finally, an example of MNAR mechanism is when a

patient leaves the study because of her bad condition which is related to her

longitudinal profile, including the measurements that would have been ob-

served if she would come for a visit. In the last case, that is under MNAR, the

dropout process cannot be ignored, and the joint distribution of the dropout

and longitudinal processes needs to be modeled. In this setting three ap-

proaches have been proposed, namely pattern mixture, selection and shared

parameters models. The first two approaches are mainly applied for discreet

time, whereas the last one can handle both discreet and continuous time-

to-dropout. An overview of these model classes can be found in Little [5] ,

Hogan and Laird [6] and Molenberghs and Kenward [7] . In this thesis, mo-

tivated by the nature of the data that were collected in a continuous time, we

consider only the shared parameter model approach where both submodels

for the longitudinal and survival processes share some common parameter.

That in fact includes the model postulated by Faucett and Thomas [2] as a

special case. This class of models allows to model the dropout mechanism

depending on past of future values of the longitudinal outcome using the

random effects.

1.1 Literature Review

Several models have been proposed for jointly modeling of longitudinal and

survival responses. A nice overview is given by Davidian et al. [8] and Ri-
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zopoulos [9]. One of the early motivations for joint modeling has been studies

that aimed to evaluate whether the longitudinal marker can act as a surro-

gate for the survival response. In particular, in early papers joint models

have been used in order to model CD4 cell counts together with survival

data in HIV/AIDS studies. In order to asses whether the CD4 cell count

could be regarded as a surrogate marker for the time to AIDS or death. Tsi-

atis, DeGruttola and Wulfson [10] studied this surrogacy using the Prentice

criteria [11] . They considered a simple linear mixed model for a longitudinal

CD4 response taking into account the measurement error and a Cox model

for the survival outcome. They proposed a two-stage procedure in which the

mixed model was fitted for every event time t separately for all subjects at

risk up to time t. In particular, for each time t the empirical Bayes esti-

mate of the biomarker value from the mixed model was used to maximize

the partial likelihood of the Cox model. This procedure, motivated by the

nonlinearity of the CD4 response, approximated hazard given the observed

history of the marker. Dafni and Tsiatis [12] showed via simulation that this

two-procedure is still biased but the bias is much reduced compared to naive

plug-in methods. Such two-stage approaches have been also considered by

Bycott and Taylor [13] .

On the other hand, a growing literature on joint modeling topic was mo-

tivated by the non-ignorable missing data problem in longitudinal studies.

Wu and Caroll [14] considered a probit model for dropout in order to correct

for informative censoring in the longitudinal process comparing unweighted

least squares, weighted least squares and a pseudo maximum likelihood ap-

proaches. Categorical or ordinal longitudinal responses have received much

less attention in the joint modeling framework and the proposed methods
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mainly handle nonrandom dropouts for discrete longitudinal data. Molen-

berghs, Kenward, and Lesaffre considered a multivariate Dale model for

longitudinal ordinal data and a logistic regression model for dropout [15].

Kaciroti et al. used a pattern-mixture model to analyze clustered longi-

tudinal ordinal data with non-ignorable missing values [16] . Albert and

Follmann [17] extended the model of Wu and Carroll for count data. Vi-

viani et al. [18] considered generalized linear mixed joint models for Poisson

and binomial longitudinal responses.

As a further extension Song et al. [19] considered semiparametric joint

models relaxing the distributional assumption for the random effects. Tsi-

atis and Davidian [20] proposed an alternative conditional score approach

based on estimating equations that makes no distributional assumption on

the underlying random effects. Song et al. [21] extended this approach for

the multivariate longitudinal data. Several authors considered the Bayesian

approach for fitting joint models. Faucett and Thomas [2] and Xu and

Zeger [22] used Markov chain Monte Carlo (MCMC) techniques. Wang and

Taylor [23] proposed to account for the association between the longitudinal

an the event time outcomes using an integrated Ornstein-Uhlenbeck (IOU)

process. Brown and Ibrahim [24] considered a semiparametric Bayesian

joint model with no parametric assumption on the random effects. Ibrahim

Chen and Sinha [25] proposed a Bayesian generalization of a joint model

for the case with multivariate longitudinal data. Bayesian joint models for

multivariate longitudinal data have been discussed by several other authors

( [26], [27], [28],). Albert and Shih [29] proposed a two-stage procedure

using sampling methods to impute missing values.

Joint models with nonlinear mixed-effects submodels have been discussed
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by Wu et al. [30] , Hu and Sale [31] and Kaciroti et al. [32] . Finally, Elashoff

at al. [33], Li et al. [34] and Williamson et al. [35] extended the joint model

for the case of many causes of failures within a competing risks setting using

the maximum likelihood approach. Huang et al. [36] handled this problem

using Bayesian methods. Some other extensions involved proposing a latent

class model ( [37], [38], [39]). Within this approach each latent class is

characterised by a class-specific marker trajectory and a class-specific risk

of the event assuming that a latent class structure entirely captures the

correlation between the longitudinal marker trajectory and the risk of the

event. Unlike in the shared parameter approach the latent class models do

not allow to evaluate specific assumptions regarding the characteristics of

the marker trajectory that are the most influential on the event risk.

A great popularity of the joint modeling approach in medical literature

was related to the availability of the free software for fitting this kind of

models. The R package JM developed by Rizopoulos [40] allows to estimate

most of the joint models for the normal longitudinal responses and time-to-

event under a maximum likelihood approach. Within this package a relative

risk survival submodel with different baseline hazards is implemented, as

well as Accelerated Failure Time (AFT) model. Competing risks can be

also considered. Various options for the survival model and optimization

algorithms are provided. As the updated and faster version of the algorithm

implemented in JM Rizopoulos [41] proposed recently a pseudo-adaptive

Gauss-Hermite quadrature rule . Another R package for fitting joint models

is joineR written by Philipson, Sousa and Diggle [42] . However it allows

only for the formulation similar to the one proposed by Wulfson and Tsiatis

[3].
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1.2 Motivating Data Sets

Our research is mainly motivated by two data sets from transplantation stud-

ies. The first data set, analysed in Chapter 2, comes from an international

prospective trial on kidney-transplant patients that compared the two main

methods of kidney storage prior to the transplantation surgery. In the first

arm donors’ kidneys were administered to cold storage, whereas in the sec-

ond arm they were administered to machine perfusion (MP). The advantage

of machine perfusion is the possibility of measuring different kidney’s pa-

rameters reflecting the state of the organ. One of the parameters of interest

was renal resistance level (RR), which is an indicator of the kidney condition

with respect to its flow.

At the end of the study only 26 graft failures were observed. The re-

nal resistance level (RR) was expected to be an important risk factor for

graft failure. It was measured using the perfusion machine at the moment

of taking the organ out from a donor (t = 0), and thereafter at 10 minutes,

30 minutes, 1 hour, 2 hours, 4 hours and just before transplantation. The

time of last measurement was different for different patients and sometimes

unknown. Exploratory analysis confirmed the biological expectation that al-

lografts exhibit their highest renal resistance levels just after being extracted

from the donor. There was a clear asymptote above zero that was reached

after about 5 hours by each patient. This reflected the fact that there is no

“perfect flow” through the kidney. Our aim here was to study the associ-

ation of the renal resistance evolution profile with the risk of graft failure

taking into account the baseline characteristics, i.e: the age of the donor,

donor’s region (3 countries considered) and donor’s type (heart-beating or
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non-heart-beating).

The second data set also comes from a Eurotransplant registry and con-

sists 2921 heart recipients entering the waiting list in a period of three years.

Each recipient was classified to one of the following states: Transplantable

(T), Non-Transplantable (NT), Urgent (U) and High Urgent (HU). These

states were based on the Eurotransplant urgency-based allocation system [43]

and reflected the patients’ actual health condition. The evaluation time was

different for each recipient and depended on the previous classification in the

sense that more severe patients were evaluated more frequently. The first

evaluation took place at entry and additional evaluations were performed

while the patient remained on the waiting list. Up to the censoring date,

528 patients had died (D) without receiving a transplant, 1565 patients re-

ceived a transplant (TT) and 239 patients had been removed (R) because

of other reasons. The purpose of the study was to predict the future state

of the recipient and to estimate the risk of any of the 3 competing events

(TT, R, D) based on the history of states on the waiting list with adjusting

for baseline covariates. That prediction would allow clinicians for eventual

intervention, namely putting the patient with the highest risk of death at

the top of the waiting list. This data is analysed using multi-state models

techniques in Chapter 3 and using the joint model approach in Chapter 4.

The last data set comes from a study conducted by the Department of

Cardio-Thoracic Surgery of the Erasmus Medical Center in the Netherlands.

This study includes 285 patients who received a human tissue valve in the

aortic position in the hospital in the period from 1987 until 2008 [44]. Aor-

tic allograft implantation are widely used for a variety of aortic valve or

aortic root diseases due to their hemodynamic characteristics as a valve sub-
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stitute. Using a human tissue in such type of surgery is however related

to degeneration and the concomitant that often requires a re-interventions.

Due to their complexity these re-operations are unfortunately related to the

mortality rate around 4–12%. It is therefore of great interest for clinicians

to have prognostic tool for the future prospect of a patient with a human

tissue valve in order to plan re-operation and minimize valve-relate morbid-

ity and mortality. In the considered data set 77 (27%) patients received a

sub-coronary implantation (SI) and the remaining 208 patients a root re-

placement (RR). These patients were followed prospectively with the echo

examinations scheduled at 6 months and 1 year postoperatively, and bien-

nially thereafter. At each examination the measurements of aortic gradient

(mmHg) were taken. By the end of follow-up 59 (20.7%) patients had died,

and 73 (25.6%) patients required a re-operation on the allograft. The com-

posite event, re-operation or death, was observed for 125 (43.9%) patients.

This data set is analysed in Chapter 5 and our aim here was to provide

accurate predictions of re-operation-free survival for future patients taking

into account their current longitudinal aortic gradient profile as well as the

baseline information, namely age, gender, BMI and the type of operation

they underwent.

1.3 Goals of the Thesis

In this thesis we have considered several extensions of joint models that

have been proposed in the literature in order to capture the features of the

perviously introduced datasets and to answer our scientific questions.

In Chapter 2 we focus on a setting that shares some similarities with the
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standard joint modeling framework. In particular, we consider the longitudi-

nal responses that are taken before the actual follow-up for the time-to-event

has been initiated. In that setting there is no need for joint modeling since

the longitudinal responses did not constitute an endogenous time dependent

variable measured at the same period as the time to event. Nevertheless,

the problem of measurement error still remains. To handle this problem we

propose a two-stage procedure that can be a simpler alternative to joint mod-

eling in similar settings. An additional complexity is the nonlinear character

of the longitudinal response that can be handled using this approach com-

pared to joint modeling framework. The procedure can be also generalized

for any type of longitudinal responses such as binary or ordinal .

As mentioned in Section 1.1 the joint modeling techniques have been

mainly studied only for continuous longitudinal outcome. Categorical longi-

tudinal responses have received less attention in that framework, mainly in

the context of handling nonrandom dropouts for discrete longitudinal data.

When it comes to competing risks problem the proposed joint models fo-

cus mainly on joint analysis of survival and repeated continuous or ordinal

responses. We, therefore propose first, in Chapter 3, a simple method to

analyze the nominal response in presence of competing risks. In particular,

we use the pseudo-values approach introduced by Andersen et al. [45] and

apply it for the Aalen-Johansen estimator of the state occupation probabili-

ties of the non-Markov process. This approach allows to study the impact of

baseline covariates on the occupation probabilities without modeling the de-

pendence on the history. To address the problem of the competing events we

fit a multinomial model for the next state given the previous state observed

since the dependence on the previous state was revealed. The proposed
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pseudo-values approach is a simpler and straightforward alternative com-

paring to other non-standard methods available for non-Markov models. In

Chapter 4 we analyze the same data using the joint modeling framework and

propose a Bayesian model for joint modeling of categorical longitudinal data

and time-to-event response taking into account the presence of competing

risks.

The majority of prognostic models in the medical literature use only a

small fraction of the available biomarker information. Simple approaches

discard valuable information not taking into account that the rate of change

in the biomarker levels is not only different from patient to patient but also

dynamically changes over time for the same patient. Hence, it is medically

relevant to investigate whether repeated measurements of a biomarker can

provide a better understanding of disease progression. In particular, in trans-

plantation setting, the possibility of updating prediction of the risk of death

based on the changing health condition for a specific patient allows to make

an intervention by the clinician such as putting her at the top of the waiting

list improving the chance of survival of that patient. Motivated by these ar-

guments, in Chapter 4, we present how the joint modeling approach can be

used for producing dynamic predictions in the presence of competing risks.

In particular, we model the urgency status as a categorical longitudinal re-

sponse variable, which is assumed to be associated with the competing risks

process. We derive the posterior predictive distributions for the longitudi-

nal and event time outcomes. Additionally, we examine how the different

parameterizations of the joint model influence the obtained predictions. By

different parameterizations we mean different functional relationships be-

tween the longitudinal and time-to-event outcomes. The predictions of the
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cumulative incidence functions and the categorical longitudinal response are

updated as additional measurements of the longitudinal response are avail-

able.

Going one step further, in Chapter 5, we compare the joint modeling

technique for making dynamic prediction based on the continous longitu-

dinal marker with the older method for producing such predictions, called

landmarking. We show how the survival probabilities can be obtained under

each method and discuss the differences in the underlying assumptions. In

addition, as in the previous chapter, we show how the functional relation-

ship between the two processes may affect predictions. In particular, we

consider parametrization in which the risk for an event depends on the rate

of increase or decrease of the longitudinal outcome as well as on the whole

longitudinal trajectory. To assess the quality of the derived predictions from

the two approaches different measures of discrimination and calibration are

presented.



Chapter 2

A Two-Stage Joint Model

In this chapter we propose a two-stage approach to for joint mod-

eling nonlinear longitudinal response and time-to-event. At the

first stage we summarize the longitudinal information with non-

linear mixed-effects model, and at the second stage we include

the Empirical Bayes estimates of the subject-specific parameters

as predictors in the Cox model for the time to allograft failure.

To take into account that the estimated subject-specific parame-

ters are included in the model, we use a Monte Carlo approach

and sample from the posterior distribution of the random effects

given the observed data. Our proposal is exemplified on a study

of the impact of renal resistance evolution on the graft survival.

This chapter has been published as “A Two-Stage joint model for Nonlinear Longi-
tudinal Response and a Time-to-Event with Application in Transplantation Studies” in
Journal of Probablity and Statistics, 2012 [46].

13
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2.1 Introduction

Many medical studies involve analyzing responses together with event history

data collected for each patient. A well-known and broadly studied example

can be found in AIDS research, where CD4 cell counts taken at different

time points are related to the time to death. These data need to be analyzed

using a joint modeling approach in order to properly take into account the

association between the longitudinal data and the event times. The require-

ment for a joint modeling approach is twofold. Namely, when focus is on

the longitudinal outcome, events cause nonrandom dropout that needs to be

accounted for in order to obtain valid inferences. When focus is on the event

times, the longitudinal responses cannot be simply included in a relative

risk model because they represent the output of an internal time-dependent

covariate [1].

In this paper, we focus on a setting that shares some similarities with the

standard joint modeling framework described above, but also has important

differences. In particular, we are interested in the association between lon-

gitudinal responses taken before the actual follow-up for the time-to-event

has been initiated. This setting is frequently encountered in transplantation

studies, where patients in the waiting list provide a series of longitudinal

outcomes that may be related to events occurring after transplantation. A

standard analysis in transplantation studies is to ignore the longitudinal in-

formation and use only the last available measurement as a baseline covari-

ate in a model for the allograft survival. It is however evident that such an

approach discards valuable information. An alternative straightforward ap-

proach is to put all longitudinal measurements as covariates in the survival
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model. Nevertheless, there are several disadvantages with this approach.

First, it would require spending many additional degrees of freedom, one

for each of the longitudinal measurements. Second, patients with at least

one missing longitudinal response need to be discarded, resulting in a great

loss of efficiency. Finally, we may encounter multicollinearity problems due

to the possibly high correlation between the longitudinal measurements at

different time points.

Nowadays, when it comes to measuring the association between a longi-

tudinal marker and an event-time outcome, a standard approach is to use

the joint model postulated by Faucett and Thomas [2] and Wulfson and

Tsiatis [3]. In this setting the longitudinal responses are considered realiza-

tions of an endogenous time-dependent covariate (Kabfleish and Prentice [1]),

which is measured with error and for which we do not have the complete his-

tory of past values available. To account for these features we estimate in

the joint modeling framework the joint distribution of the survival and lon-

gitudinal processes . Unlike in the multivariate approach, where we have

to interpret the estimates for each longitudinal measurement separately, the

joint modeling approach allows to get more insight in the nature of the re-

lation between the two analyzed processes since it assumes some underlying

process for the longitudinal measures.

However in contrast with the standard joint modeling setting, in our

case (i.e., transplantation studies) the longitudinal responses do not consti-

tute an endogenous time dependent variable measured at the same period

as the time to event. In particular, since the longitudinal measurements are

collected prior to transplantation, occurrence of an event (i.e. graft failure

after transplantation) does not cause nonrandom dropout in the longitudi-
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nal outcome. Nevertheless, the problem of measurement error still remains.

Ignoring the measurement error affects not only the standard errors of the

estimates of interest but also it can causes attenuation of the coefficients

towards zero [11]. To overcome this we propose a two-stage modeling ap-

proach that appropriately summarizes the longitudinal information before

the start of follow-up by means of a mixed effects model and then uses this

information to model the time to event by including the Empirical Bayes

estimates of the subject specific parameters as predictors in the Cox model.

To account for the fact that we include the estimates and not the true val-

ues of the parameters, we use a Monte Carlo approach and sample from

the posterior distribution of the random effects. The proposed method does

not require joint maximization neither fitting the random effects model for

each event time as in the two-stage approach of Tsiatis, DeGruttola and

Wulfsohn [10]. We compare this approach with the “naive” one when the

uncertainty about the estimates from the first step is not taken into account,

as well as with the full Bayesian approach. Our approach shares similari-

ties with the two-stage approach of Albert and Shih [29]. They considered

a model, in which a discrete event time distribution is modeled as a linear

function of the random slope of the longitudinal process estimated from the

linear mixed model. The bias from informative dropout was reduced by us-

ing the conditional distribution of the longitudinal process given the dropout

time to construct the complete data set. To account for the measurement

error in the mean of the posterior distribution of the random effects, the

variance, that incorporates the error in estimating the fixed effects in the

longitudinal model, was used. However we use sampling not to impute miss-

ing values and correct for non-random dropout but in order to account for
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the variability in the predicted longitudinal covariates that are then used

in survival model. A method of adjusting for measurement error in covari-

ates, that was used by Albert and Shih, does not apply in our case since it

requires the discrete time-to-event and linear model for longitudinal data.

The time-to-event could be discretized but still we have a nonlinear model

for longitudinal data.

Our research is motivated by data from an international prospective trial

on kidney-transplant patients. The study has two arms, where in the first

arm donors’ kidneys were administered to cold storage, whereas in the sec-

ond arm they were administered to machine perfusion (MP). The advantage

of machine perfusion is the possibility of measuring different kidney’s pa-

rameters reflecting the state of the organ. One of the parameters of interest

is renal resistance level (RR), which has been measured at 10 minutes, 30

minutes, 1 hour, 2 hours, 4 hours and just before transplantation. Our aim

here is to study the association of the renal resistance evolution profile with

the risk of graft failure. The time of last measurement was different for dif-

ferent patients and often unknown exactly. However based on the medical

consult and visual inspection of the individual profiles the last measurement

was chosen to be taken at 6 hours for each patient.

The rest of the paper is organized as follows. Section 2.2 provides the

general modeling framework with the definition of the two submodels for the

longitudinal and survival data, respectively. Section 2.3 describes the esti-

mation methods for the full likelihood and the proposed two-stage approach.

In Section 2.4 we apply the two-stage approach to the renal data. Section

2.5 contains the setup and the results for the simulation study. Finally, in

Section 2.6 we discuss the proposed methodology.
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2.2 Joint Modeling Framework

Let Yi(u) denote the longitudinal profiles for individual i, i = 1, 2, . . . , N . We

assume that Yi(u) are collected for the ith individual prior to the specified

time ti, u ∈ (0, ti). Let t = 0 denote the time of the first longitudinal

measurement and ti - the time of the last collected measurement. ti can

be different for different individuals and we denote by mi the number of

longitudinal measurements for subject i collected until time ti and by uij

the time of jth measurement. Denote by T ∗
i ≥ ti the true survival time

for individual i. Since the survival time is right censored we observe only

Ti = min(T ∗
i , Ci), where Ci ≥ ti is the censoring time with the failure

indicator ∆i, which equals to 1 if the failure is observed and 0 otherwise, i.e.

∆i = I(Ti ≤ Ci) with I(·) denoting the indicator function. We will assume

that censoring is independent of all other survival and covariate information.

In addition we assume that the observed longitudinal responses Yi(u) are

measured with error (i.e. biological variation) around the true longitudinal

profile Wi(u), i.e.,

Yi(u) = Wi(u) + εi(u), with εi(u) ∼ N(0, σ2),

and cov(εi(u), εi(u′)) = 0, u′ ̸= u. (2.1)

We will consider the longitudinal response that exhibit a nonlinear profiles

in time. Therefore, we approximate Wi(u) by means of a nonlinear mixed

effects model:

Wi(u) = f(u;ϕi), with ϕi = Xiβ + Ziαi, (2.2)
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where f(·) is a nonlinear function, parameterized by the vector ϕi. The

parameters ϕi control the shape of the nonlinear function and subscript

i denotes that each subject may have its own nonlinear evolution in time

in the family f(·;ϕ). For the subject-specific parameter ϕi we assume a

standard mixed model structure with Xi denoting the fixed effects design

matrix with corresponding regression coefficients β, Zi the random effects

design matrix and αi the random effects. The random effects αi are assumed

to be independent and normally distributed with mean zero and variance-

covariance matrix D.

For the event process we postulate the standard relative risk model of

the form:

λi(t) = λ0(t) exp(γTϕi), (2.3)

where λi(t) is the hazard function, λ0(t) is the baseline hazard, which can

be modeled parametrically or left completely unspecified. The subject spe-

cific parameters ϕi summarize the longitudinal evolutions of the response for

each subject, and therefore coefficients γ measure the strength of the associ-

ation between the different characteristics of the underlying subject-specific

nonlinear evolution of the longitudinal profiles and the risk for an event.

Within the formulation of the two submodels (2.2) and (2.3) the same ran-

dom effects now account for both the association between the longitudinal

and event outcomes, and the correlation between the repeated measurements

in the longitudinal process.

In the particular transplantation setting that will be analyzed in the

following study Yi(u) are the renal resistance level measurements collected
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for the ith donor prior to the transplantation time ti and the same index i

is used to denote the allograft transplanted to the ith patient. Time t = 0

represents the time that the kidney is removed from the donor and put in

cold storage or in a perfusion machine.

2.3 Estimation

2.3.1 Full likelihood framework: Bayesian approach

In the standard joint modeling framework the estimation is typically based

on maximum likelihood or Bayesian methods (MCMC). This proceeds under

the following set of conditional independence assumptions:

p(Ti, ∆i,Yi | αi;θ) = p(Ti, ∆i | αi;θt)p(Yi | αi;θy)

p(Yi | αi;θy) =
mi∏
j=1

p(Yi(uij) | αi;θy). (2.4)

In particular, we assume that given the random effects the longitudinal pro-

cess is independent from the event times, and moreover, the longitudinal

measurements are independent from each other.

Maximum likelihood methods use the joint likelihood and maximize the

log-likelihood function li(θ) =
∑
i

log p(Ti, ∆i,Yi;θ). This requires numerical

integration and optimization, which makes the fit difficult, especially in high-

dimensional random effects settings. Standard options for numerical integra-

tion are Gaussian quadrature , Laplace approximation or Monte Carlo sam-

pling ( [47], [48]). Maximization of the approximated log-likelihood is based

on an EM algorithm ( [3], [49], [50], [10], [20]). Several authors proposed a
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Bayesian approach (MCMC)( [2], [22], [23]). Bayesian estimation, that gen-

eralizes a joint model for the case with multivariate longitudinal data, has

been discussed by Ibrahim Chen and Sinha [25]. Brown and Ibrahim [24]

considered semiparametric model relaxing the distributional assumption for

the random effects. In most papers the longitudinal submodel is a linear

mixed effects model. Joint models with nonlinear mixed-effects submodels

have been less studied in the literature [30]. Nonlinear mixed models are

more common in pharmacokinetics and pharmacodynamics, where they are

jointly modeled with non-random dropout using NONMEM software. Sev-

eral authors considered a Bayesian approach with a nonlinear mixed model

and informative missingness ( [31], [32]).

Here we will proceed under the Bayesian paradigm to estimate the model

parameter. Under the conditional independence assumption (2.4) the poste-

rior distribution of the parameters and the latent terms, conditional on the

observed data, are derived as:

p(θ,αi | Ti; ∆i;Yi) ∝
N∏

i=1

mi∏
j=1

{p(Yi(uij) | αi;θy)} p(Ti, ∆i | αi;θt)

p(αi;θα)p(θy,θt,θα),

(2.5)

where θT = (θT
y ,θT

t ,θT
α ) is a vector of parameters from the longitudinal

and survival models and the vector of the random effects, respectively and

p(· ) denotes the appropriate probability density function. The likelihood

contribution for the ith subject conditionally on the random terms is given

by:
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p(Yi, Ti, ∆i | αi;θ) = p(Yi | αi;θy)p(Ti, ∆i | αi;θt)

=
[
λ0(Ti) exp{γTϕi(αi)}

]∆i exp

−
Ti∫

0

λ0(t) exp{γTϕi(αi)}dt


1

(2πσ2)mi/2 exp

−
mi∑
j=1

{Wi(uij ,αi) − Yi(uij)}2

2σ2

 .

(2.6)

The baseline hazard can be assumed of a specific parametric form, e.g. the

Weibull hazard. For the priors of the model parameters we make standard

assumptions following Ibrahim et al. [25]. In particular, for the regression

coefficients β of the longitudinal submodel and for the coefficients γ of sur-

vival submodel we used multivariate normal priors. For variance-covariance

matrices we assumed an inverse Wishart distribution and for the variance-

covariance parameters we took as a prior an inverse-gamma. For all param-

eters the vague priors have been chosen.

The implementation of the Cox and piecewise constant hazard models is

typically based on the counting process notation introduced by Andersen and

Gill [51] and formulated by Clayton [52]. In particular we treat the counting

process increments dNi(t) in the time interval [t, t + ∆t] as independent

Poisson random variables with means Λi(t)dt:

Λi(t)dt = ωi(t) exp(γTϕi)dΛ0(t), (2.7)

where ωi(t) is an observed process taking the value 1 if subject i is observed

at time t and 0 otherwise, dΛ0(t) is the increment in the integrated baseline
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hazard function occurring during the time interval [t, t + ∆t]. Since the

conjugate prior for the Poisson mean is the gamma distribution, we assume

the conjugate independent increments prior suggested by Kalbfleisch [53],

namely:

dΛ0(t) ∼ Gamma(c ∗ dΛ∗
0(t), c), (2.8)

where dΛ∗
0(t) is a prior mean hazard with c being a scaling parameter rep-

resenting the “strength” of our prior beliefs. The gamma prior was also

chosen for the baseline risk parameter of the Weibull distribution in para-

metric survival model. Alternatively to implement the Cox model in a fully

Bayesian approach one may use the “multinomial-Poisson trick” described

in the OpenBUGS manual that is equivalent to assuming independent in-

crements in the cumulative hazard function. The increments are treated

as failure times and noninformative priors are given for their logarithms.

Analogically to the Cox model a piecewise constant hazard model was im-

plemented. We have modeled baseline hazard using a step function with

3 quantiles t1, t2 and t3 as changing points assuring the same number of

events in-between. Let t0 denote the start of the follow up, t4 the maximum

censoring time and dΛ0k(t) the increment in the integrated baseline hazard

function occurring during the time interval [tk, tk+1], k = 0, 1, 2, 3. Then for

different intervals we specify a separate prior hazard mean dΛ∗
0(t) and:

dΛ0k(t) ∼ Gamma(c ∗ dΛ∗
0k(t), c). (2.9)

Similarly as for the Cox model the results were not sensitive with respect

to the choice of the hyperparameters as long as the priors were sufficiently
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diffuse. The above nonparametric approach can be criticized as having the

independent priors for the hazard distribution. However as suggested by

Kalbfleisch [53] a mixture of gamma priors can be considered as an alterna-

tive. Moreover in a piecewise constant model one can also include change

points as unknown parameters in the model as proposed in a Bayesian con-

text by Patra and Dey [54] and applied by Cassellas [55].

In order to assess convergence for the full Bayesian model standard

MCMC diagnostic plots were used. The burn-in size was set to 10000 it-

erations, which was chosen based on the visual inspection of the trace plots,

and confirmed by the Raftery and Lewis diagnostics. The same number of

iterations were used for constructing the summary statistics. Based on the

autocorrelation plots we have chosen every 30th iteration. Therefore in to-

tal to obtain 10000 iterations for the final inference 300000 iterations were

required after the burn-in part. Additionally we run a second parallel chain

and used Gelman and Rubin diagnostic plots to asses the convergence.

2.3.2 Two-stage approach

As mentioned in Section 2.1, the longitudinal measurements in our setting

do not constitute an internal time-dependent covariate, since the events took

place after the last longitudinal measurement was collected. In particular,

since events do not cause nonrandom dropout, the event process does not

carry any information for the longitudinal outcome. Mathematically this

means that information for the random effects αi is actually only coming

from the longitudinal responses, that is:
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p(αi | Yi(uij); Ti; ∆i;θy) = p(αi | Yi(uij);θy) (2.10)

Thus, we can avoid the computational complexity of the full likelihood frame-

work presented in Section 2.3.1 by employing a two-stage approach. More

specifically: At Stage I: we obtain θ̂y by maximizing the log-likelihood:

ly(θy) =
N∑

i=1

∫
p(Yi | αi;θy)p(αi;θy)dαi

This requires numerical integration and we use a Gaussian quadrature for

that purpose. Then we obtain the corresponding empirical Bayes estimates:

α̂i = arg max
α

[
log p(Yi | α; θ̂y) + log p(α; θ̂y)

]
and compute the predictions:

ϕ̂i = Xβ̂ + Ziα̂i.

At Stage II we fit the relative risk model:

λi(t) = λ0(t) exp
(
γT ϕ̂i

)
.

However, a potential problem in the above is that ϕ̂i is not the true subject-

specific parameters but rather an estimate with a standard error. If we

ignore this measurement error, the regression coefficients γi will be possibly

attenuated. To overcome this problem we propose here a sampling approach

to account for the variability in ϕ̂i, very close in spirit to the Bayesian ap-
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proach of Section 2.3.1. In particular, we use the following sampling scheme:

Step 1: simulate θ
(m)
y ∼ N(θ̂y, vâr(θ̂y))

Step 2: simulate α
(m)
i ∼

[
αi | Yi,θ

(m)
y

]
Step 3: calculate ϕ

(m)
i = Xβ(m) + Ziα

(m)
i and fit the relative risk model

λi(t) = λ0(t) exp{γTϕ
(m)
i } from which θ̂

(m)
t = γ̂(m) and vâr(θ̂(m)

t ) are kept.

Steps 1-3 are repeated m = 1, . . . , M times.

Step 1 takes into account the variability of the MLEs, and Step 2- the vari-

ability of αi. Moreover, because the distribution in Step 2 is not of a stan-

dard form, we use a independence Metropolis-Hastings algorithm to sample

from it with multivariate t-proposal density centered at an Empirical Bayes

estimates α̂i, covariance matrix vâr(α̂i) and df=4. The low number of de-

grees of freedom was chosen to ensure that the proposal density has heavy

tails to provide sufficient coverage of the target density [αi | Yi,θy]. The

variance-covariance matrix estimated from the nonlinear mixed model was

additionally scaled by some parameter Scale. The tuning parameter allows

to control the acceptance rate through the range of the proposed distribu-

tion. If the range is too narrow, the proposed values will be close to the

current ones leading to low rejection rate. On the contrary if the range is

too large, the proposed values are far away from the current ones leading

to high rejection rate. We chose the acceptance rate to be 0.5 following

Carlin [56] that suggests a desirable acceptance rates of Metropolis-Hastings

algorithms to be around 1/4 for the dependence (random walk) M-H version

and 1/2 for the independent M-H. Roberts et al. [57] recommended to use

the acceptance rate close to 1/4 for high dimensions and 1/2 for the mod-
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els with dimensions 1 or 2. They discussed this issue in the context of the

random walk proposal density. The authors showed that if the target and

proposal densities are normal, then the scale of the latter should be tuned so

that the acceptance rate is approximately 0.45 in one-dimensional problems

and approximately 0.23 as the number of dimensions approaches infinity,

with the optimal acceptance rate being around 0.25 in as low as six dimen-

sions. In our case an independence version of Metropolis-Hastings algorithm

is applied. The proposal density in the algorithm does not depend on the

current point as in the random-walk Metropolis algorithm. Therefore for

this sampler to work well, we want to have a proposal density that mimics

the target distribution and have the acceptance rate be as high as possible.

In order to obtain a desirable acceptance rate one needs to run a sampling

algorithm for a number of iterations for a given data set and compute an

acceptance rate and then repeat the procedure changing the tuning param-

eter until the chosen acceptance rate is obtained. Usually a small number of

iterations (100-500) is sufficient for the purpose of calibration. More details

about the Metropolis-Hastings acceptance-rejection procedure can be found

in the supplementary material (section A). A final estimate of θt is obtained

using the mean of the estimates from all M iterations:

¯̂θt =
M∑

m=1
θ̂m

t

/
M. (2.11)

To obtain the SE of ¯̂θt we use the variance-covariance matrix V :

V̂ = Ŵ + (M + 1)B̂
/

M, (2.12)
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where Ŵ is the average within-iteration variance and B̂ is the between-

iteration variance, i.e.,

Ŵ =
M∑

m=1
Ûm

/
M,

and

B̂ = 1
M − 1

M∑
m=1

(θ̂m
t − ¯̂θt)(θ̂m

t − ¯̂θt)T (2.13)

Ûm represents a variance-covariance matrix estimated in iteration m for γ̂m.

2.4 Analysis of the RR Data

2.4.1 Models’ specification.

We apply the proposed two-stage procedure and a fully Bayesian approach

to the transplantation study introduced in Section 2.1. The data was taken

from an international prospective trial on 337 kidney pairs, that aimed to

compare two different types of storage, namely cold storage and machine

perfusion (MP). Here we focus on the second arm. Our main outcome of

interest is graft survival time censored after 1 year. At the end of the study

only 26 graft failures were observed. The renal resistance level (RR) was

expected to be an important risk factor for graft failure. It was measured

using the perfusion machine at the moment of taking the organ out from a

donor (t = 0), and thereafter at 10 minutes, 30 minutes, 1 hour, 2 hours, 4

hours and just before transplantation. As mentioned in the Section 2.1, the

time of last measurement was different for different patients and sometimes

unknown. However there was a clear asymptote visible from the individual
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profiles that was reached after about 5 hours by each patient. Based on that

behavior and after the medical consult we chose the last measurement to be

taken at 6 hours for each patient. Other variables of interest include the

age of the donor, donor’s region (3 countries considered) and donor’s type

(heart-beating or non-heart-beating).

Figure 2.1: Individual profiles of renal resistance level for 50 sampled donors

The individual profiles of 50 randomly selected kidney donors are pre-

sented in Figure 2.1. This plot confirms the biological expectation that allo-

grafts exhibit their highest renal resistance levels just after being extracted

from the donor. Thereafter they show a smooth decrease in RR until they

reach an asymptote above zero indication that there is no “perfect flow”

through the kidney. Furthermore, we observe that the initial RR level, the

rate of decrease as well as the final RR level differ from donor to donor.

Additional descriptive plots for our data are presented in the supplementary
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material (section A).

In the first step of our analysis we aim to describe the evolution of the

renal resistance level in time. Motivated by both biological expectation and

Figure 2.1 we postulate the following nonlinear function:

f(t) = ϕ1 + ϕ2e−ϕ3t, (2.14)

where ϕ1 is a lower asymptote, ϕ1 + ϕ2 is an initial value for t=0, and ϕ3

is the rate of decrease from ϕ2 to ϕ1 (see also Figure A.2 in Supplementary

material).

To accommodate for the shapes of RR evolutions observed in Figure 2.1,

we need to constraint ϕ1, ϕ2 and ϕ3 to be positive. Moreover, in order to

allow for individual donor effects, we use the following formulation:

Yi(t) = Wi(t) + ε(t), with

Wi(t) = fi(t) = exp(ϕ1i) + exp(ϕ2i)e− exp(ϕ3i)t,

where

ϕ1 = β10 + β11DonorAge + β12DonorT ype + β13DonorReg1 + β14DonorReg2 + α1

ϕ2 = β20 + β21DonorAge + β22DonorT ype + β23DonorReg1 + β24DonorReg2 + α2

ϕ3 = β30 + β31DonorAge + β32DonorT ype + β33DonorReg1 + β34DonorReg2 + α3,

and αi ∼ N(0, D), ε(t) ∼ N(0, σ2) with α = (α1, α2, α3) and cov(αi, ε(t)) =

0. In the second step the predicted parameters (ϕ1, ϕ2, ϕ3 ) summarizing the
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RR evolution of the nonlinear mixed model are included in the graft survival

model. The final model for graft survival was of the form:

λi(u) = λ0(u) exp
(

γ1ϕ̂1i + γ2ϕ̂2i + γ3ϕ̂3i

)
.

To investigate the impact of ignoring that the covariate ϕ̂i is measured with

error, we compared the naive approach in which we ignored this measurement

error and our proposal that accounts for the uncertainty in ϕ̂i via Monte

Carlo sampling. We used Metropolis-Hastings algorithm with independent

t-proposal and acceptance rate around 50% for the reason given in Section

2.3.2. We simulated M = 10000 samples with additional initial step of the

scaling parameter calibration in order to achieve the desirable acceptance

rate. The final estimates (and SE) of the parameters associated with RR

covariates were calculated using the formulas described in the Section 2.3.

We compared the results from the two-stage procedure with the estimates

obtained from the fully Bayesian joint model fitted for the data using the

priors specified in Section 2.3.1.

The analysis was performed using R Statistical Software. Packages sur-

vival and nlme were used for the two submodels fit and a separate code was

written by the first author for the sampling part. The fully Bayesian model

was fitted using OpenBUGS software with the priors specified in Section

2.3.1. In particular, for the p × p variance-covariance matrices of multi-

variate normal priors we used inverse Wishart distribution with p degrees

of freedom. For the variance-covariance parameter of the normal longitu-

dinal response we took as a prior an inverse-Gamma(10−3,10−3). For the

baseline risk parameter of the Weibull distribution in survival submodel a



32 A Two-Stage Joint Model

Gamma(10−3,10−3) prior was used. To analyze the data using the fully

Bayesian Cox model described in Section 2.3.1 we chose the scaling parame-

ter c in a gamma prior for the independent increments to be equal 0.001 and

a prior mean dΛ∗
0(t) = 0.1. We did not observe any substantial difference for

the different values of parameter c as long as c was small enough to keep the

prior noninformative. We do not recommend too small values of the scaling

parameter c as they can lead to the computation problems. Analogically

we have chosen gamma priors for the piecewise constant hazard model. The

code for the Bayesian full joint model as well as the R codes for the sampling

two-stage procedure are available from the authors on request.

2.4.2 Results

The results for the nonlinear mixed model are presented in Table 2.1, for

the two-stage approach and in supplementary material (part A), for the

full Bayesian approach with Weibull survival model. The results for the

longitudinal part for the full Bayesian approach with Cox and piecewise

constant hazard models were similar (not presented). It can be observed,

based on the two-stage model results, that only Donor Age had a significant

impact on the RR asymptote. Donor Type and Region had a significant

impact on the steepness parameter. However we keep all the covariates in

the model for the purpose of prediction for the second stage. The mean

RR profiles for Heart-Beating and Non-Heart-Beating donors from different

regions together with fitted values based on the obtained nonlinear mixed

model are given in Supplement A.
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Table 2.1: Parameter estimates, standard errors and 95 % confidence intervals
from the non-linear mixed model for RR

Effect Parameter Estimate SE (95%CI)

Fixed effects

ϕ1
Constant β10 2.838 0.094 (2.654; 3.022)

Donor Age β11 0.005 0.002 (0.001; 0.009)
Donor Type (HB vs NHB) β12 -0.102 0.068 (-0.235; 0.031)

Donor Region 1 vs 3 β13 -0.078 0.065 (-0.205; 0.049)
Donor Region 2 vs 3 β14 -0.072 0.072 (-0.213; 0.069)

ϕ2
Constant β20 3.510 0.211 (3.096; 3.924)

Donor Age β21 0.004 0.004 (-0.004; 0.012)
Donor Type (HB vs NHB) β22 -0.064 0.154 (-0.365; 0.238)

Donor Region 1 vs 3 β23 -0.107 0.147 (-0.395; 0.181)
Donor Region 2 vs 3 β24 0.033 0.163 (-0.286; 0.352)

ϕ3
Constant β30 1.010 0.186 (0.645; 1.375)

Donor Age β31 0.003 0.003 (-0.003; 0.009)
Donor Type (HB vs NHB) β32 0.402 0.130 (0.147; 0.657)

Donor Region 1 vs 3 β33 -0.284 0.125 (-0.529; -0.039)
Donor Region 2 vs 3 β34 -0.032 0.138 (-0.302; 0.238)

Random effects

se(α1) d11 0.396
se(α2) d22 0.955
se(α3) d33 0.572

cov(α1, α2) d12 0.257
cov(α1, α3) d13 -0.053
cov(α2, α3) d23 0.023

se(εij) σ 7.507
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In the second step of the analysis we applied at first the naive approach

and used the estimates ϕ̂1, ϕ̂2 and ϕ̂3 from the nonlinear mixed model as

fixed covariates in the final Cox models for graft survival. Table 2.2 presents

the results for the survival submodel for the all approaches, namely the plug-

in method, two-stage approach and the fully Bayesian model. For the fully

Bayesian approach the results for the parametric Weibull model together

with Cox and piecewise constant hazard models are listed. The results from

Table 2.2 indicate that only the RR asymptote could have a significant im-

pact on graft survival.

We observe that the estimates are close or almost identical as in plug-in

model. SE of the Cox regression coefficients for the model with sampling are

greater than SE from the plug-in model in Table 2.2 (a), especially for the

parameter ϕ3. The increase in SE is somewhat the expected and is caused by

the additional variability in covariates captured by the sampling approach.

The fully Bayesian model produces similar results to our semi-Bayesian sam-

pling model with somewhat lower SE. We do not observe substantial differ-

ence between fully parametric and nonparametric models in a fully Bayesian

approach. Since in the analyzed real data the number of events is small

the fully Bayesian Cox and piecewise constant hazard Bayesian models were

expected to produce similar results. We did not observe any substantial

difference for the different values of hyper parameters.

Even though it is hard to compare exactly the computational time for the

two approaches, the rough estimation of the total computational time needed

to estimate and assess the convergence (2 chains) of the full Bayesian model
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Table 2.2: Parameter estimates, SE and 95 % confidence/credibility intervals
from proportional hazards Cox model for graft survival for plug-in method (a),
sampled covariates (b) and fully Bayesian approach (c, d, e)

(a)
Graft Survival - Plug-in

Effect Parameter log(HR) SE (95%CI)

exp(ϕ1) γ1 0.052 0.022 (0.009; 0.095)
exp(ϕ2) γ2 -0.005 0.005 (-0.015; 0.005)
exp(ϕ3) γ3 0.053 0.158 (-0.257; 0.363)

(b)
Graft Survival - Sampling two-stage

Effect Parameter log(HR) SE (95%CI)

exp(ϕ1) γ1 0.053 0.024 (0.006; 0.100)
exp(ϕ2) γ2 −0.006 0.008 (-0.022; 0.010)
exp(ϕ3) γ3 0.055 0.185 (-0.308; 0.418)

(c)
Graft Survival - Fully Bayesian - Weibull

Effect Parameter log(HR) SE (95%HPD)

exp(ϕ1) γ1 0.058 0.023 (0.013; 0.103)
exp(ϕ2) γ2 −0.005 0.008 (-0.020; 0.011)
exp(ϕ3) γ3 0.056 0.180 (-0.299; 0.411)

(d)
Graft Survival - Fully Bayesian - Cox

Effect Parameter log(HR) SE (95%HPD)

exp(ϕ1) γ1 0.056 0.023 (0.010; 0.101)
exp(ϕ2) γ2 −0.006 0.008 (-0.022; 0.010)
exp(ϕ3) γ3 0.055 0.171 (-0.280; 0.390)

(e)
Graft Survival - Fully Bayesian - Piecewise constant hazard
Effect Parameter log(HR) SE (95%HPD)

exp(ϕ1) γ1 0.054 0.024 (0.007; 0.102)
exp(ϕ2) γ2 −0.005 0.009 (-0.022; 0.012)
exp(ϕ3) γ3 0.054 0.179 (-0.297; 0.405)
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was about 21.6 hours and depended on the implemented survival model.

A similar computational time was needed for the full Bayesian model with

the Cox survival model and piecewise constant hazard model with a slightly

more time needed for the parametric Weibull model. For the two-stage

approach the total computational time was about 10 hours using the Intel(R)

Core(TM)2 Duo T9300 2.5 GHz and 3.5 GB RAM.

2.5 Simulations

2.5.1 Design

We have conducted a number of simulations to investigate the performance

of our proposed two-stage method. In particular, we compared the plug-

in method which uses the Empirical Bayes estimates ϕ̂i from the nonlin-

ear mixed model and ignores the measurement error, the two-stage Monte

Carlo sampling approach that accounts for the variability in ϕ̂i and the

fully Bayesian approach. In the fully Bayesian approach only the parametric

Weibull model was considered.

For the longitudinal part the data were simulated for 500 patients from

model (2.15) with ϕ1i = β10 + α1i, ϕ2i = β20 + α2i and ϕ3i = β30 + α3i,

αi ∼ N(0,D), Y ∼ N(f(t), σ2). The variance-covariance matrix D of the

random effects was chosen to be D = vech(0.6, 0.01, −0.01, 0.6, 0.01, 0.3).

We kept 7 measurement points as in the original analyzed data set as well

as the nonequal distances between them. The variance of the measurement

error σ2 was chosen to be 0.25, 1 and 25. Survival times were simulated

for each patient using the exponential model with the rate parameter equal
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exp(λ), where λ:

λ = γ1 exp(ϕ1) + γ2 exp(ϕ2) + γ3 exp(ϕ3).

We considered scenarios with fixed coefficients γ1 = 0.5, γ2 = 0.5 and γ3 =

−0.2. The censoring mechanism was simulated independently using an expo-

nential distribution Exp(λC). Parameter λC was changed in order to control

proportion of censored observations. Different scenarios with 40% and 20%

of censoring were examined . For each simulated data set we fitted four sur-

vival models, namely the gold standard model that uses the true simulated

values ϕi, the plug-in model, the sampling model and fully Bayesian joint

model. Neither nonparametric Cox nor piecewise constant hazard model

were considered in a fully Bayesian approach since we have simulated the

data from the parametric exponential model and wanted to compare the

proposed two-stage approach with the “best” fully Bayesian model. All the

prior settings, size of burn-in, number of iterations etc. for the fully Bayesian

model were the same as for the real data analysis.

2.5.2 Results

In Table 2.3 we present the average results for 200 simulations of different

scenarios are presented. The results from our sampling model were very close

to the results obtained for the fully Bayesian model with slightly smaller bias

and RMSE for the fully Bayesian approach. That was due to the better esti-

mation of random effects variability in fully Bayesian approach. The plug-in

method produced the biggest bias that sometimes with combination with

the small variability of the estimates around the biased mean resulted in
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larger RMSE than in sampling approach. As the measurement error or the

percentage of censored observations increased, the estimates of survival sub-

model were more biased with larger RMSE for all approaches. The increase

in bias was more severe when the measurement error variance was increased

rather than when the percentage of to censoring was higher. This bias was

however decreased when the number of repeated measures per individual was

increased. This has to do with the amount of information that is available

in the data for the estimation of ϕ̂i. As it is known from the standard mixed

models literature [58], the degree of shrinkage in the subject-specific pre-

dicted values is proportional to σ and inversely proportional to ni and σα.

To compare the relation between variance of the random effects and variance

of the measurement error, one can use intra class correlation (ICC) defined

as the proportion of the total variability that is explained by the clustering

with a given random effect. ICC was similar for the simulated and the real

data for the biggest σ and increased in a simulation data as σ decreased.

Since the calculations for the simulation study were highly computa-

tionally intensive we have used the cluster with about 20 nodes with AMD

Quad-Core Opteron 835X, 4 x 2GHz and 16GB RAM per node. The analysis

for the 200 simulated data sets for a single scenario took about 65.5 hours

using the Bayesian approach and 31.2 hours using the two-stage approach.

2.6 Discussion

We have proposed a two-stage method that can be used in a joint analysis of

longitudinal and time to event data when the longitudinal data are collected
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Table 2.3: Bias and Residual Mean Squared Error (RMSE) for the method
with true ϕi (GS), Empirical Bayes estimates ϕ̂i (Plug-in), sampled ϕi and fully
Bayesian approach

7 time points

% censoring 20 40

σ = 0.5
γ1 γ2 γ3 γ1 γ2 γ3

GS 0.00(0.04) -0.02(0.03) 0.01(0.03) -0.01(0.04) 0.02(0.04) -0.02(0.04)
plug-in -0.05(0.06) -0.04(0.05) 0.06(0.07) -0.08(0.09) -0.04(0.05) 0.12(0.12)

sampling -0.04(0.05) 0.03(0.08) 0.02(0.07) -0.05(0.11) -0.02(0.06) 0.03(0.10)
Bayesian -0.03(0.04) -0.02(0.04) 0.01(0.02) -0.01(0.04) -0.02(0.04) 0.02(0.07)

σ = 1

GS 0.04(0.05) 0.04(0.07) -0.03(0.07) -0.05(0.09) -0.04(0.06) -0.03(0.05)
plug-in -0.07(0.08) -0.08(0.09) 0.07(0.09) -0.10(0.12) -0.08(0.09) 0.08(0.11)

sampling -0.07(0.09) -0.06(0.10) -0.02(0.11) -0.05(0.12) 0.05(0.11) -0.03(0.12)
Bayesian 0.01(0.03) 0.05(0.06) -0.03(0.07) 0.05(0.06) 0.04(0.06) -0.04(0.07)

σ = 5

GS 0.04(0.06) 0.05(0.06) 0.04(0.08) 0.05(0.10) 0.01(0.05) -0.02(0.06)
plug-in -0.09(0.10) -0.10(0.11) 0.08(0.11) -0.20(0.22) -0.21(0.22) 0.14(0.18)

sampling 0.08(0.13) 0.06(0.12) -0.05(0.12) 0.07(0.14) -0.05(0.13) -0.11(0.18)
Bayesian 0.09(0.10) 0.05(0.09) -0.09(0.10) -0.09(0.10) 0.08(0.12) -0.12(0.18)

14 time points

% censoring 20 40

σ = 0.5
γ1 γ2 γ3 γ1 γ2 γ3

GS -0.03(0.03) 0.00(0.02) -0.02(0.03) 0.02(0.03) -0.03(0.04) 0.02(0.04)
plug-in -0.02(0.03) -0.03(0.04) 0.05(0.07) -0.02(0.04) -0.03(0.04) 0.05(0.06)

sampling 0.03(0.04) 0.02(0.06) 0.02(0.07) 0.02(0.04) 0.04(0.05) 0.02(0.08)
Bayesian -0.03(0.04) -0.02(0.04) -0.02(0.04) 0.02(0.04) 0.03(0.04) -0.05(0.06)

σ = 1

GS -0.03(0.04) -0.03(0.04) -0.01(0.03) 0.00(0.03) -0.02(0.04) 0.05(0.06)
plug-in -0.09(0.06) -0.05(0.06) 0.06(0.07) -0.02(0.04) -0.04(0.05) 0.11(0.11)

sampling 0.04(0.08) 0.02(0.08) -0.02(0.07) -0.02(0.04) -0.02(0.08) 0.04(0.09)
Bayesian -0.03(0.04) 0.04(0.05) -0.03(0.05) 0.02(0.04) 0.03(0.05) 0.06(0.07)

σ = 5

GS -0.03(0.04) -0.03(0.04) 0.01(0.04) -0.01(0.04) -0.02(0.04) 0.05(0.06)
plug-in -0.05(0.06) -0.10(0.11) 0.07(0.09) -0.10(0.11) -0.09(0.10) 0.11(0.12)

sampling 0.04(0.09) 0.04(0.11) -0.05(0.11) 0.07(0.12) 0.05(0.11) -0.06(0.16)
Bayesian 0.03(0.05) 0.03(0.08) -0.05(0.10) 0.02(0.04) 0.06(0.10) -0.09(0.14)



40 A Two-Stage Joint Model

before the start of follow-up for survival and the interest is in estimation

of the impact of longitudinal profiles on survival. The modeling strategy

is based on specification of two separate submodels for the longitudinal and

time to event data. First the longitudinal outcome is modeled using a random

effects model. Then the survival outcome is modeled using the Empirical

Bayes estimates of the subject specific effects from the first stage. The

variability of the estimates from the first stage is properly taken into account

using a Monte Carlo approach by sampling from the posterior distribution

of the random effects given the data.

As it was demonstrated, ignoring the additional variability of the subject-

specific estimates when modeling survival leads to some bias, and in partic-

ular, attenuates the regression coefficients towards zero [11]. That was also

confirmed by our simulation study. In comparison with the fully Bayesian

approach, the proposed partially Bayesian method produced similar results

with substantially less number of iterations required. This is due to the fact

that sampling was conducted already around the EB estimates and there

is no needed for a burn-in part as in a standard fully Bayesian approach.

We used 10000 iterations per subject, which was about the size of burn-in

needed in the fully Bayesian models. No thinning was used in our approach,

based on the visual inspection of the trace plots. Though it is hard com-

pare the fully Bayesian approach and the two-stage approach with respect

to the computational time precisely, the rough approximation of the total

computational time required for the two-stage approach was about half in

comparison with the fully Bayesian approach. The fully Bayesian approach

provided similar results with the two-stage approach for the special setting

we have considered here. However fitting a fully Bayesian model was a bit of
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“overdone” in the sense that by design the longitudinal data could not be af-

fected by the survival. Since in many transplantation studies the longitudinal

data are collected before the start of follow-up for survival, therefore using

our method in that cases seems to be more appropriate than using a fully

Bayesian approach. We recommend the proposed approach not only for the

particular transplantation studies but in any setting that shares the similar-

ity of the separated follow-up periods for the two analyzed endpoints. That

is for example when the event process does not carry any information for

the longitudinal outcome and the condition (2.10) from Section 2.3.2 holds.

The simulation results indicate that even if the data come from the real joint

setting in which (2.10) may not hold, the proposed two-stage procedure can

be comparable to the fully Bayesian approach.

Since the sampling in the proposed method relies strongly on the re-

sults of the first part, the accurate estimation of all parameters of nonlinear

mixed model is a key feature and should be performed carefully. This can

be a problematic when the deviation from normality of the random effects

is suspected. However it was shown that even for the non-normal random

effects one can still use a standard software such as nlmixed in SAS with just

a small change in a standard program code. In such cases the probability

integral transformation (PIT) proposed by Nelson et al. [59] can be used or

the reformulation of the likelihood proposed by Liu and Yu [60] . An alter-

native is fitting a Bayesian model only to estimate the longitudinal submodel

in the first stage, instead of the likelihood methods. Fitting nonlinear mixed

models using Bayesian standard software can be however problematic due

to the high nonlinearity in random effects that is caused both by the nonlin-

ear function of the longitudinal profiles and by the possible restrictions on
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parameters [61].

In comparison with the two-stage approach proposed by Tsiatis, DeGrut-

tola and Wulfsohn [10] our method is less computationally intensive since it

does not require fitting as many mixed models as there are event times

in the data. An alternative, that is somewhat simpler to implement and

does not require any assumption about the distribution on the underlying

random effects, is the conditional score approach proposed by Tsiatis and

Davidian [20]. However this method is less efficient than the methods based

on likelihood. The focus in the discussed approaches is on the association

between the longitudinal and event time processes. However in transplan-

tation studies when the two follow-up periods for longitudinal and survival

outcomes are often separated the interest is rather in making an inference

on the marginal event-time distribution. This is similar to the Bayesian ap-

proach proposed by Xu and Zeger [22], that uses the longitudinal data as

auxiliary information or surrogate for time-to-event data. Our approach is

particulary useful in this setting. Since each of the two submodels is fitted

separately, a standard software can be used to implement our method with

just a small part of additional programming for Monte Carlo sampling.

Another advantage of the proposed two-stage method is that it can be

easily generalized from survival to other types of models as it was applied for

the binary Delayed Graft Failure (DGF) indicator (results not shown) in the

analysis of the renal data. For that purpose in the second step of the two-

stage procedure the survival model was replaced by the logistic regression

model for the DGF indicator. The first stage of the proposed approach could

be also modified allowing for other types of longitudinal response and other

types of mixed models. Therefore instead of using a nonlinear mixed model
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a linear mixed model or generalized linear mixed model (GLMMs) can be

considered depending on the type and the shape of the longitudinal response.

In the presented real data example we have chosen the three parameters

that described the evolution of the longitudinal response. However for the

particular question of interest one can easily choose the most convenient

parametrization for the longitudinal model and use the selected parameters

to analyze the non- longitudinal response in the second stage.
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Chapter 3

Multi-State Models for Nominal

Longitudinal Response

In transplantation studies often several response measurements

are collected for patients while they are on the waiting list. In

this setting it is often of primary interest to assess whether the

available history of a patient can be used for predicting patient

survival as well as further performance on the list. In this work

we use a multi-state models approach to analyze the performance

of patients described by their urgency status that changes in time

while waiting for a new organ. We use the pseudo-values ap-

proach introduced by Andersen et al. (2003) and apply it for

the Aalen-Johansen estimator of the state occupation probabili-

ties since the transition probabilities were found to depend on the

history. This approach allows to study the impact of baseline in-

formation on the occupation probabilities treating the dependence

45
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on the history as a nuisance. It was found that the previous

state, the current state and time from the moment of entering

the waiting list had the impact on the future performance of the

patient. Depending on those, patients were more likely to come

back to the particular status in which they were before, die or get

a transplant. To address the problem of those competing events a

multinomial approach was used for the next state given the pre-

vious state observed.

3.1 Introduction

In transplantation studies the urgency status is measured over time for pa-

tients waiting for an organ transplant reflecting their changing disease state.

In these setting, it is often of primary interest to investigate whether the

available history on the urgency status of a patient can be used for predict-

ing survival as well as the patient’s future status on the waiting list. We use a

multi-state models approach to address this problem. In particular, we con-

sider data from the Eurotransplant heart transplantation waiting list, where

patients are classified as U (Urgent), HU (High Urgent), T (Transplantable)

and NT (Not Transplantable) and due to the nature of the last option those

categories can be only partially ordered. The absorbing states were death

(D), getting a transplant (TT) or removal from other reasons than the pre-

vious two (R). A graph depicting all possible transitions between the states

is presented in Figure 3.1. The evaluation time was different for each pa-

tient and depended on the previous classification meaning that more severe

This chapter has been submitted for publication as “Simple Analysis of Non-Markov
Models: A Case Study on Heart Transplant Data” in Statistical Modelling [62].
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patients were evaluated more frequently.

Figure 3.1: Graph of all possible transitions between the states.

This type of data is typically analyzed using multi-state models. As

standard in this framework, we started our analysis from the assumption

that the process is Markov and homogeneous in time (even though by design

this assumption was priori questionable). That implied a constant transi-

tion (intensity) matrix that does not depend on time or past history of the

process (but may depend on time-fixed baseline covariates), and allowed the

likelihood methods to be used. The results suggested that the homogene-

ity assumption does not seem to be satisfied. A standard extension of this

framework for relaxing this assumption is to assume a piecewise constant

intensity model. However, this still proved not to be sufficient, and in the

next step we applied non-parametric methods to estimate transition prob-

abilities using the Aalen-Johansen estimator. In a non-Markov setting it is

known that Aalen-Johansen estimators for the transition probabilities are
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not consistent and may produce biased results. Alternatively, Datta and

Satten [63] showed that for non-Markovian processes, the state occupation

probabilities may be still consistently estimated, provided that data are not

subject to stage-dependent censoring. In this work we will show how the

problem of dependence on the history can be addressed using a multinomial

approach. Applied to our data, the multinomial model revealed a depen-

dence on the history, in particular on the state visited before the current

one. This motivated us, in the final step of the analysis, to work with occu-

pation probabilities and employ the pseudo-values approach of Andersen et

al. [45] to directly model the effect of the baseline covariates on those prob-

abilities, treating the dependence on the history as a nuisance. We should

note that the pseudo-values approach was proposed by Andersen et al. in

the context of competing risks problem. It uses the pseudo-values from a

jackknife statistic constructed for a non-parametric estimator of the transi-

tion probabilities. This approach has been applied for cumulative incidence

functions in a competing risks model [64,65], to the restricted mean survival

time [66] and in simple multistate models [67]. Pseudo-values models were

further studied by Graw et al. [68] providing more theoretical justification.

However, the consistency and asymptotic normality was proven only in the

special case of competing risk models. We extend the univariate pseudo-

values approach for the multivariate model on occupation probabilities as

suggested by Andersen et al. [45] and present the simulation results for more

general non-Markov models.

An additional complexity in the practical use of multi-state models de-

signs is the possible non-ignorability of the observation process and the

interval-censoring problem. Regarding the former issue, in our study more



3.1 Introduction 49

severely ill patients are monitored more close and the next sampling time is

chosen on the basis of the current disease state. In particular, given a current

state re-evaluation by Eurotransplant audit group is mandatory every fixed

number of days and the length of this period depends on the particular cur-

rent state. For example, for status HU it is 7 days and for state U, 28 days.

Therefore, we have the so-called doctor’s care sampling scheme. Grüger et

al. [69] showed that this scheme is not informative when likelihood methods

are used because the likelihood given this examination scheme is proportional

to the likelihood obtained when the examination scheme is fixed in advance.

Therefore, the parameters of the process can be estimated independently of

the parameters of the sampling scheme. For the nonparametric approach

the Aalen-Johansen estimator is also valid even if the process is not Markov

since the censoring process is not stage-dependent and does not depend on

any part of the history prior the current state, neither on the covariates.

The second issue of interval-censoring comes from the fact that the ex-

act transition times are often only observed for the final but not for the

intermediate states. In our analysis it was taken into account only in the

initial analysis assuming a Markov model, with parametric or eventually

piecewise-constant intensities. That was possible due to the fact that for the

multi-state model with continuous time the inference problem can be de-

coupled into several survival problems and assuming the ignorability of the

observation process the likelihood for the whole observation of the trajectory

can by written [70]. This is not the case for the models with discrete time

observations. For nonparametric approaches, in particular, for the pseudo-

value approach based on the Aalen-Johansen estimator for the occupation

probabilities, we assumed the exact transition times ignoring the interval-
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censoring and allowing only for possible right censoring. As an alternative, in

the interval-censoring situation, usually the kernel-based methods are pro-

posed in order to obtain nonparametric estimators in multi-state models.

Datta and Sundaram [71] suggested smoothed product limit estimators for

the occupation probabilities for the current status data when the individ-

uals are not monitored constantly but each individual is observed once at

random time point. For non-homogenous Markov models a penalized likeli-

hood approach was also proposed for the simple multi-state models to take

into account the interval-censoring problem. Also in the approach of Ander-

sen [45] only the right type of censoring was handled, which was assumed to

be stochastically independent of the event times and covariates. The possible

consequences of ignoring the interval-censoring have been discussed by Joly

et al. [72] for a simple three-state “illness-death” model.

The rest of the paper is organized as follows. In Section 3.2 we describe

the methodology for non-Markov models that was applied for the analysis

of the real heart transplant data. The obtained results can be found in

Section 3.3. In Section 3.4 we present results from a small simulation study.

Finally in Section 3.5 we discuss the applied methodology and provide some

final conclusions. General framework for multi-state models is provided in

Supplementary material B. All the codes and an example of the simulated

data set are available at: http://smj.sagepub.com.

3.2 Non-Markov Models

In multi-state models one usually assumes the process is Markov and ho-

mogenous in time. Then the transitions probabilities can be derived from
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the transition intensities which can be modeled using baseline covariates by

means of standard hazard-based models. These may include both multiplica-

tive hazard models and additive hazard models. Provided that there are no

loops, i.e., that there is no way to come back to a given state, the explicit

expressions for transition intensities are available and yield plug-in methods

for the corresponding probabilities, both for Markov and semi-Markov ho-

mogenous models. Even though the plug-in methods seem to be simple and

straightforward, they often lead to complicated relations between the co-

variates and transition probabilities. Moreover, they can be used only when

the transition intensities are constant or piecewise constant in time. This

implies that in regression models for transition intensities only time-fixed

covariates are allowed. An attractive alternative involves the direct model-

ing on transition probabilities using non-parametric Aalen-Johansen (A-J)

estimator .

Relaxing the Markov assumption makes the standard parametric ap-

proaches inapplicable and restricts the use of nonparametric Aalen-Johansen

estimator only for the occupation probabilities. In general, literature on

non-Markov multi-state models is scarce and involves mainly nonparametric

methods for a direct estimation of the transition probabilities. For a non-

Markov illness-death process without recovery Meira-Machado et al. [73]

derived nonparametric estimators of the transition probabilities, which they

compared with the Aalen-Johansen estimator under different scenarios in a

simulation study. The results presented systematic bias of the A-J estimator

when the Markov assumption is violated. Nevertheless, the state occupation

probabilities can be still estimated using the Aalen-Johansen estimator since

the product-integral estimator for those probabilities is consistent without re-
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quiring the Markov assumption. The variance of the occupation-probability

estimator in a non-Markov setting is not readily available and thus the Boot-

strap method is required to estimate it [74]. The above apply for the case of

non-Markov process with random censoring. The stage-dependent censoring

can be handled via inverse probability of censoring weighting, as proposed

by Datta and Satten [75]. In general, as noted by [70], the likelihood or

Bayesian approaches seem to be safer than marginal models because of the

selection and censoring problems. However, in non-Markov situation, as for

our data, the likelihood-based approaches do not apply and one must rely

on marginal inference that usually ignores the interval-censoring problem.

Some proposed approaches (Cook et al. [76], Sutradhar et al. [77]) allow

to handle conditionally Markov progressive model under interval-censoring

using random effects approach.

3.2.1 Pseudo-values approach for the non-parametric

Aalen-Johansen estimator

In order to assess the effect of covariates on the occupation probabilities we

will apply the pseudo-values approach proposed by Andersen et al. [45] to

Aalen-Johansen estimator of the occupation probabilities. This approach

was originally proposed to model the cumulative incidence function in a

competing risk model. To introduce the pseudo-values approach, let K =

{1, 2, . . . , N} denote the finite state space for the considered multi-state pro-

cess X with the time interval Γ = [0, τ ], τ < ∞. First, we calculate the

so-called pseudo-values for the function of interest F (X), which in our case

is the Aalen-Johansen estimator of the occupation probability. More specif-
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ically, the pseudo-values are defined as:

θ̂i(t) = MF̂ (X)(t) − (M − 1)F̂ (X)−i(t), (3.1)

where F̂ (X)(t) and F̂ (X)−i(t) are the estimators of F (X(t)) at time t calcu-

lated for all individuals and for the subset without individual i, respectively,

i ∈ 1, . . . M . The idea of pseudo-values is based on the leave-one-out esti-

mator F̄ =
∑M

i=1 F̂ −i [78]. If F̂ is unbiased, then E(F̄ ) = F . In particular,

it can be shown that F̂Jack = F̂ − bJack, where bJack = (M − 1)(F̄ − F̂ ), is

an unbiased estimate of F up to the second order. That holds, in particular,

for the mean of the pseudo-values θ̂i.

In the pseudo-values approach of Andersen et al. (2003), θ̂i(t) are cal-

culated for all individuals i at some arbitrary chosen time points t1, . . . , tk.

Therefore, we obtain k pseudo-values for each subject. Note that due to the

fact that θ̂i(t1), . . . , θ̂i(tk) are evaluated for the same subject, they will be

correlated. Hence, in the next step, and in order to measure the effects of

covariates on F (X), the Generalized Estimating Equations (GEE) approach

is utilized with θ̂i as a response. Let Zi denote a vector of covariates of

interest. We model the expected value of the pseudo-values, as:

E(θi) = g−1(βT Zi), (3.2)

with g(·) denoting a monotonic link function. Estimates of β are based on
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the unbiased estimating equations:

∑
i

{ ∂

∂β
g−1(βT Zi)

}T

V −1
{

θ̂i − g(βT Zi)
}

=
∑

i

Ui(β) = U(β) = 0, (3.3)

where V −1 is a working covariance matrix. The covariance matrix of β̂ is

obtained using the sandwich estimator [79].

Following Graw et al. [68] here we require that:

E(θi | Zi) = g−1(βT Zi) + OP (1). (3.4)

The above condition of conditional unbiasedness of the pseudo-values given

the covariates formulated by Graw et al. [68] relaxes unbiasedness of the

pseudo-values, as formulated in Andersen et al. [45] . This relaxation is

required in order to be able to use an appropriate theorem of the GEE

approach [80] to prove the large sample properties of the GEE solution for

β. Condition (3.4) holds trivially when the observations are uncensored, and

it was shown by Graw et al. [68] to also hold for the pseudo-values in the

right censored situation. The central argument was a second order von Mises

expansion of the Aalen-Johansen estimate which leads to an appropriate

representation of the jackknife pseudo-values [81]. The interval-censoring

was not considered.

We apply the pseudo-values approach to the Aalen-Johansen estimator of

the occupation probabilities. We define first the Aalen-Johansen estimator
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F̂h(t) for the probability ph(t) of occupying state h at time t as:

F̂h(t) =
N∑

k=1

pk(0)p̂kh(0, t), h ∈ K; t ∈ Γ, (3.5)

where pk(0) is the initial distribution of the process at time 0 and p̂kh(0, t)

are the estimates of the transition probabilities between states k and h from

time 0 to t, that are obtained from the Aalen-Johansen product-integral

estimator for the transition probability matrix P (s, t) = (Pkh(s, t)) for s = 0

as:

P̂ (0, t) = R
(0,t]

(I + dÂ(u)). (3.6)

In the above formula Â denotes the standard Nelson-Aalen estimator for the

cumulative transition intensity matrix [79]. Note, as mentioned in the Intro-

duction, that in this nonparametric approach we ignore interval censoring

allowing only for potential right censoring when calculating A-J estimator.

F̂h(t) is calculated for all individuals and we denote by F̂ −i
h (t) the A-J

estimate for the subset without individual i, i = 1, . . . , M . Then for subject

i at time t a pseudo-value is calculated:

θ̂i(t) = MF̂h(t) − (M − 1)F̂ −i
h (t). (3.7)

Then, to assess the effects of covariates on the occupation probabilities, we

fit a regression model on pseudo-values using the GEE approach according

to (3.2) and (3.3), under the assumption (3.4).

Note that in the complete case, i.e. when there is no censoring, Fh(t)
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could be estimated unbiasely as the proportion of subjects in state h at time

t. Then θi(t) is simply Fh(t). With censoring we replace possibly unobserved

Fh(t) by the pseudo-value θ̂i(t). In the regression model for θ, in which we

model E(θi) the θ̂i is used as a response. Validity of the assumption (3.4) was

analyzed Graw et al. [68] only in the situation of competing risks. However,

following their suggestion, this condition can be proved also in a more general

model by constructing the pseudo-values using the smoothed mappings of

the Nelson-Aalen and the Kaplan-Meier functionals.

We considered the univariate pseudo-values approach, in which we model

each occupation probability separately as well as the multivariate pseudo-

values approach where all occupation probabilities are modelled together, as

suggested by Andersen et al. [67]. Therefore, in the multivariate approach

we model the vector θ̂i(t) = (θ̂1i(t), . . . , θ̂Ni(t)) of the pseudo-values for the

occupation probabilities for all N states.

Apart from the formal results of Graw et al. [68] , the pseudo-values

approach was mainly evaluated using the simulation methods. The choice

of numbers of time points and their location as well as the choice of a link

function were shown to have a moderate impact on the results [64].

3.2.2 Multinomial models approach

The regression models based on pseudo-values, presented in the previous

section, allow us to study the effect of baseline covariates on the occupation

probabilities in a non-Markov model, when the dependence on the history

is a nuisance. However, it does not allow to assess the impact of the his-

tory on those probabilities. To overcome this limitation we propose here an

alternative approach, under which we can study how the observed history
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affects the occupation probabilities. This is based on viewing a homoge-

nous Markov model as series of multinomial models for each observation

conditionally on the previous observation. These models may be fitted using

standard software for multinomial logistic regression. However, when the

time is not discrete and the Markovian assumption is violated, we may still

fit the multinomial model on the transition level, taking as a response the

next state observed and adjusting for the time of transition as well as for

baseline covariates.

In particular, for each individual we consider the triples (s−, s, t) such that

the person visited the particular state p at time s before the current state

c, i.e : X(s−) = p, X(s) = c, X(t) = h, h, c, p ∈ K, s−, s, t ∈ Γ; s− < s < t.

For these triples we considered the following model:

Pr(X(t) = h | X(s) = c; X(s−) = p) = exp(ωh)
1+Σk ̸=r exp(ωk) , h ̸= r;

ωh = γh0 + γh1t + γh2Z, (3.8)

where X(t) is the next state, t-time of transition, Z-baseline covariates. For

the reference category r we have:

Pr(X(t) = r | X(s) = c; X(s−) = p) = 1
1 + Σk ̸=r exp(ωk)

. (3.9)

In the general setting, current and previous states could be included as co-

variates in a model (3.8-3.9). In our application, conditioning on c and p

in (3.8) and (3.9) is realized by considering the corresponding subset of all

transitions for the reasons explained in the next section. We work now on
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the transition level, instead of the individual level. Since we pool all indi-

viduals together, we need to account for the correlation introduced by using

the same patient more than once. For that reason SE for the multinomial

models estimates were calculated by means of leave-one-out jackknife esti-

mators estimator [78]. In particular, let π denotes the estimated probability

of interest from the multinomial model (3.8-3.9) and π−i denotes the same

probability estimated excluding individual i. Then we calculate jackknife SE

as simple standard deviation of the π̂−i estimates:

SEJack(π̂) =

√√√√ N

N − 1

N∑
i=1

(π̂−i − π̂−i)2, π̂−i = 1
N

N∑
i=1

π̂−i. (3.10)

3.3 Analysis of the Heart Transplant Data

We apply the described methodology to the transplantation study introduced

in Section 3.1. The data were taken from an international data base of the

Eurotransplant Heart recipient waiting list. We consider 2921 recipients

who entered the list in the period from 01.01.2006 to 31.12.2008. Recipients’

observation was censored at 31.03.2010. At that time 528 patients have died

(18%), 1566 (54%) have received a transplant, 239 (8%) were removed from

the list because of other reasons and 588 (20%) were still on the waiting

list. At the moment of entering the list some of the baseline information

was also collected, namely: country of origin (7 countries), blood group and

cardiovascular disease (categorized into Dilated Cardiomyopathy (DCM),

Coronary Artery Disease (CAD) and others).

Following a standard approach in the multi-state models framework, we
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started our analysis assuming a Markov process and modeled each intensity

using the parametric approach. We considered only patients with more than

one transition. In addition, due to numerical reasons and in order to be

able to fit the model, we also imposed the constraints for the intensities

with small number of transitions setting them to zero. To evaluate the fit

of the Markov model, we graphically compared the observed and expected

prevalence for each state for different models. We did not expect to observe

substantial differences when assuming the exact transition times and without

that assumption. Plausible reasons for the observed discrepancies include

the dependence of transition rates on omitted covariates or on time (non-

homogenous Markov process). The other possible reason of the discrepancies

is the dependence of transition intensities on the time spent in the current

state (semi-Markov) or the history of the process ( non-Markov process). We

estimated transition probabilities Phr(0, t) using Aalen-Johansen estimator ,

where h is not an absorbing state and h ̸= r. Phr(s, t) were relatively close to

Phr(0, t − s) indicating that these probabilities seem to depend on the time

interval t−s. This suggests that the process is homogenous. Nonetheless, as

we observed the time-homogenous Markov model had a poor fit. Therefore,

the main issue for the data at hand seems to be that the Markov assumption

is not satisfied.

Further examination of the history of individual profiles suggested com-

mon patterns such as (T, NT, T, NT, . . .) or (T, HU, T, HU, T, HU, . . .).

Since the Aalen-Johnsen estimator cannot be used to investigate the Markov

assumption, we decided to apply the multinomial model approach presented

in Section 3.2.2 adjusted for blood group, cardiovascular disease and in-

formed consent law (IC) (binary). In our setting, the transition to the same
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state is not allowed and additionally for some transitions in the real data we

observed very low frequency. Therefore, conditioning on c and p in (3.8) and

(3.9) is realized by considering the corresponding subset of all transitions.

The death was chosen as the baseline category for most of the models, unless

there were none or very few transitions to death from a given current state

c, for a given previous state p. Separate models were fitted for given states

c and p and jackknife SE were calculated according to formula (3.10). In

practice in most of the cases due to the small subgroup sample sizes the

adjustment for baseline covariates was not possible.

The results of this analysis are presented in Tables 3.1 and 3.2. None of

the effect of baseline covariates, except the effect of blood group for a model

with the previous state T and current HU in Table 3.1, was found to be

significant. This is probably attributed to the lack of power due to the small

size of the subset sample. Therefore, we present only the model adjusted

for time and not for baseline characteristics (except the model in Table 3.1).

Further results can be found in Supplementary material B. Table 3.1 presents

the results from the multinomial model for the previous state Transplantable

and the current state HU. Because there were only 3 transitions to state R

from HU, they were excluded from the analysis. Table 3.1 presents the

results from the multinomial model for the previous state Transplantable

and the current state HU. Because there were only 3 transitions to state R

from HU, they were excluded from the analysis. Among the patients with

the previous state Transplantable and the current state U there was only

one case of transition to the state R and it was excluded from the analysis.

As can be seen from Table 3.2 a multinomial model grabs the peak in the

probability of being in state HU in the early times. This results in the highest
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estimate for log(OR)=1.52, which is almost significant (p=0.058). This is

due to the fact that most of the transitions to state HU from other states

took place in early times of being on the waiting list. For the current state

NT there were only 2 transitions to the state HU and one to the state U

and they were excluded from the analysis. There were no transitions to TT.

As can be concluded, from NT patients were most likely to go back to T.

The probability of death was greater than probability of being removed. We

analyzed in the same manner other histories. The results for those models

are provided in Supplementary material B.

Table 3.1: Estimates of log(OR) for the effect of current state and time on
the probability for the next transition from the current state HU based on the
multinomial model with the previous state Transplantable, adjusted for time and
baseline covariates. Baseline category is probability of death. Jackknife SE are
calculated. The estimates for the time effect are not listed.

Previous=T

Current=HU

Intercept Blood B vs A Blood AB vs A

P(NT)/P(D) 0.42(1.13) -0.54(0.58) -0.9(1.3)
P(HU)/P(D) - - -
P(U)/P(D) -13.76(6.81) -1.15(0.62) -1.44(1.26)
P(T)/P(D) -0.23(1.01) -1.28(0.54) -1.13(1.01)
P(R)/P(D) - - -

P(TT)/P(D) 2.58(0.68) -0.5(0.48) 0.01(0.76)

As mentioned in the previous section, the A-J estimates for the transi-

tion probabilities are consistent only if the Markov assumption is satisfied.
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Table 3.2: Estimates of log(OR) for the effect of the current state and time on
the probability for the next transition from the current state U and NT based
on the multinomial model with the previous state Transplantable, adjusted for
time. Baseline category is probability of death. Jackknife SE are calculated.
The estimates for the time effect are not listed.

Previous=T

Current=U Current=NT

Intercept Intercept

P(NT)/P(D) -1.25(0.93) -
P(HU)/P(D) 1.52(0.80) -
P(U)/P(D) - -
P(T)/P(D) 0.52(0.81) 1.52(0.22)
P(R)/P(D) - -0.91(0.25)

P(TT)/P(D) -0.23(0.82) -

However, for our data, and as shown in the previous analysis using the multi-

nomial approach, the Markov assumption seems to be violated. Therefore,

in the final analysis we use the A-J estimates for the state occupation prob-

ability, which are consistent regardless of whether the Markov assumption is

satisfied. To measure the effect of covariates in these occupation probabili-

ties we employed the pseudo-values approach introduced in Section 3.2.1. To

apply this approach we need to first choose the time points, at which the esti-

mators are to be calculated. In the related framework of the competing risks

models it has been shown that the choice of the number of grid points can be

proven crucial [64]. To be flexible, here we have chosen 10 time points based

on the quantiles of the observed time distribution. To take into account the

within-individual correlation (for each patient we calculate 10 pseudo-values)

we use a GEE model with an unstructured correlation matrix and identity

link. This model contained as covariates time, age, blood group, type of the
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disease (CAD, DCM and other (OD)) and IC indicator. The blood group A

and CAD disease were set as the reference levels. The GEE model with time

and baseline covariates was fitted for each occupation probability separately

in univariate pseudo-values model (3.7) and the multivariate version for all

occupation probabilities modeled together. In multivariate GEE model the

independence correlation matrix was used because of convergence problems

for any other option. The results for the univariate model for state Trans-

planted are presented in Table 3.3 and illustrated in Figure 3.2. We have

analyzed in the same univariate manner the occupation probabilities for the

remaining states.

Table 3.3: Estimates of the effect of baseline covariates on occupation probability
for state Transplanted. Results from univariate regression model on pseudo-
values.

Univariate

Estimate SE p-value

Intercept -1.090 0.051 < 0.001
Time (Days) -0.723 0.001 < 0.001
Age -0.018 0.001 < 0.001
Blood B vs A 0.034 0.027 0.208
Blood AB vs A 0.154 0.036 < 0.001
Blood 0 vs A -0.526 0.019 0.006
DCM vs CAD -0.096 0.042 0.021
Other Disease vs CAD -0.046 0.044 0.293
IConsent (Y vs No) -0.182 0.019 < 0.001

Using univariate pseudo-values approach the probabilities of being in the

given state can be compared between the different groups defined in terms of

baseline characteristics such us blood group. However, we cannot compare



64 Multi-State Models for Nominal Longitudinal Response

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

O
cc

up
at

io
n 

P
ro

ba
bi

lit
y

A
B
AB
0

(a)

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

O
cc

up
at

io
n 

P
ro

ba
bi

lit
y

IC
N−IC

(b)

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

O
cc

up
at

io
n 

P
ro

ba
bi

lit
y

Coronary Artery Disease
Dilated Cadiomyopathy
Other Diseases

(c)

Figure 3.2: Aalen-Johansen estimators for occupation probability for state Trans-
planted for patients with different baseline characteristics.
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the two complementary probabilities of being in state h and r. For example,

we can compare if patients with AB blood group have higher probability

of getting a transplant than patients with A blood group. Based on the

univariate pseudo-values approach we can also compare the probability of

death between the patients with A and AB blood group. However, we cannot

assess, what is more probable: death or getting a transplant, having the

specified blood group. Therefore we also fitted multivariate pseudo-values

model. The results regarding the impact of baseline covariates were similar as

for the univariate approach and can be found in Supplementary material B.

However, based on multivariate model clinician could conclude for example

that patient with blood group AB is more likely to get a transplant than die

as comparing to patient with blood group A. Similar questions could be also

addressed using the multinomial approach.

All computations have been performed in R. In particular, we used func-

tion msm() from msm package for fitting the Markov model. Piecewise-

constant intensity models were also fitted using this function. For the Aalen-

Johansen estimator calculation the etm() function from etm package was

used. Transitions to the same state are not allowed in the etm() function

and therefore the times for those transitions were combined. For the multi-

nomial models on the transition-level, the multinom() function in the nnet

package was used with the additional code written for the jackknife stan-

dard errors calculation. To apply pseudo-value approach for the occupation

probabilities pseudo-values calculation needed to be implemented. Then the

geese() function from the geepack package was used to fit the GEE mod-

els on the pseudo-values. All the code used in our analyses is available at:

http://smj.sagepub.com.
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3.4 Simulation Study

3.4.1 Design

To investigate the performance of the pseudo-values approach for non-Markov

models we performed a limited simulation study of 4 different scenarios with

500 samples per each scenario. In all scenarios 4 transient and 3 final states

corresponding to the analyzed real data set were considered. For each data

set, and for N=1500 subjects we simulated the waiting times Thr for a tran-

sition from state h to r from an exponential distribution with rate λhr. If

the simulated waiting time Thr was smaller than the simulated waiting time

Ths, then the individual moved from h to r. Each subject was initially in

state T and could have at maximum 10 transitions. Individuals being in

any of the non-final states after 10th transitions were considered as cen-

sored. In Scenario I we simulated data from a homogenous Markov model

with no group effect. Individual waiting times were drawn from an expo-

nential distribution with equal rate parameters λ = exp(−1) for all possible

transitions so that the average waiting time for any transition was around

exp(1) = 2.7. In Scenario II we simulated data from Markov model with

a group effect on the intensity of transition to state TT. To simulate the

group effect in each data set the individual was randomly chosen to be in

one of the 2 groups with probability 0.5. Then for all individuals in group 1

the transition times were drawn from an exponential distribution with equal

rate parameters λ = exp(−1) for all possible transitions, whereas in group 2

the waiting times were for the transition times to TT were twice shorter. In

Scenario III the non-Markov model was simulated in which the group effect

reflected the dependence on the history. The transition times were drawn



3.4 Simulation Study 67

from an exponential distribution with equal rate parameters λ = exp(−1)

for all possible transitions except that in group 2 the waiting times for a

transition to state r were twice shorter if the individual visited state r just

prior the current state. Finally, in Scenario IV, we simulated both group

effects together, the group effect on the transition intensity to state TT and

the group effect related to the history. Therefore, for group 1 the waiting

times to state TT were simulated to be twice shorter than in the other group

and additionally for the subjects from the same Group 1 the waiting times

to the previously visited state were twice shorter than to the other states.

The regression models on univariate and multivariate pseudo-values were

fitted for each data set as well as multinomial models. To estimate a true

group effect on occupation probabilities within pseudo-values approach frame-

work we fitted GEE models on the true occupation probabilities. Since we

estimated twice longer waiting times as a group effect on the history or on

the transition to state TT we use log(2) as the true group effect in a multi-

nomial model on a given intensity. For non-Markov model from Scenario

IV we compare the results with and without conditioning on the previous

state for the estimated effect on the transition to state TT. As a summary

for each scenario bias and root mean squared error (RMSE) were reported.

In the regression models on pseudo-values we used k = 10 time points in a

GEE model placed in the quantiles of the transition times distribution and

unstructured variance-covariance matrix. Additionally, for the Scenarios II

and IV we have examined the impact of different number of time points in

GEE model when increasing sample size. In particular, we have fitted the

Markov model from Scenario II and non-Markov model from Scenario IV

with k=5 and k=10 time points for the simulated samples of size N=500



68 Multi-State Models for Nominal Longitudinal Response

and N=1000.

3.4.2 Results

The pseudo values approach did not reveal any difference between the groups

when the effect was simulated independently on the response as in Scenario I

or when the effect was only dependent on the history in Scenario III (results

not shown).

Figure 3.3 illustrates the median of the Aalen-Johansen estimates for

the occupation probability for state Transplanted, Death and Removed for

all simulated data sets for the Scenarios II and IV. As can be observed,

the group effect of different transition intensities qiT T on the probability of

occupying state TT is reflected on occupation probabilities for all final states

when the process is Markov (Scenario II) or not Markov (Scenario IV). For

the state TT we could observe slightly stronger group effect for the Markov

process with somewhat larger variability. This is related to lack of the history

effect preventing from the transition to state TT in Markov model. The

pointwise confidence bounds are based on the simulations. In contrary, as

noted by Glidden [74], the pointwise confidence bounds using the recursive

formula derived by Andersen et al. [82] for the occupation probabilities do

not depend on covariance structure
√

n{(ph(t) − F̂h(t)} and depend only on

var{ph(t)− F̂h(t)}, which is the same for Markov and non-Markov processes.

We did not observe any substantial effect on the occupation probabili-

ties of any non-absorbing state, neither for the Markov nor the non-Markov

scenario.
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Table 3.4: Bias and RMSE of the group effect on occupation probability of state
Transplanted, Removal and Death for a Markov Model (Scenario II) and non-
Markov model (Scenario IV). Results from univariate and multivariate pseudo-
values approach for n=500 and n=1000, k=10 time points

Markov Model Non-Markov model
n=500

Bias RMSE Bias RMSE
Transplanted
Univariate -0.012 0.037 -0.015 0.021
Multivariate -0.025 0.017 -0.013 0.008
Death
Univariate -0.003 0.006 -0.004 0.005
Multivariate -0.001 0.003 -0.008 0.002
Removal
Univariate -0.003 0.018 -0.009 0.019
Multivariate -0.016 0.011 -0.018 0.017

n=1000
Bias RMSE Bias RMSE

Transplanted
Univariate -0.004 0.009 0.014 0.005
Multivariate -0.013 0.006 0.022 0.004
Death
Univariate -0.002 0.003 -0.012 0.006
Multivariate -0.001 0.002 -0.001 0.001
Removal
Univariate -0.014 0.012 -0.008 0.010
Multivariate -0.030 0.008 -0.016 0.007
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(a) (b)

(c)

Figure 3.3: Median of Aalen-Johansen estimators for occupation probability for
state Transplanted (a), Death (b) and Removal (c) for the data simulated from
Markov model from Scenario II (group 1-red, group 0-blue) and non-Markov
Model from Scenario IV (group 1-black, group 0-green). Dotted lines represent
pointwise confidence bounds.

When the comparing univariate and multivariate pseudo-values approaches,

the latter seems to lead to smaller RMSE. When investigating the impact of

the number of time points in the GEE model for the different sample sizes

for Scenarios II and IV we observe that increasing the number of time points
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k and sample size n leads to smaller RMSE (Table 3.4 and 3.5). We observed

rather smaller RMSE in non-Markov model, especially for the multivariate

pseudo-value approach and more time points.

Table 3.5: Bias and RMSE of the group effect on occupation probability of state
Transplanted, Removal and Death for Markov Model (Scenario II) and non-
Markov model (Scenario IV). Results from univariate and multivariate pseudo-
values approach for n=500 and n=1000, k=5 time points.

Markov Model Non-Markov model
n=500

Bias RMSE Bias RMSE
Transplanted
Univariate -0.015 0.055 -0.033 0.065
Multivariate -0.019 0.023 -0.021 0.034
Death
Univariate 0.007 0.015 0.014 0.066
Multivariate 0.008 0.005 0.009 0.028
Removal
Univariate 0.006 0.047 0.017 0.032
Multivariate 0.045 0.014 0.027 0.020

n=1000
Bias RMSE Bias RMSE

Transplanted
Univariate -0.011 0.035 -0.013 0.010
Multivariate -0.009 0.020 -0.003 0.008
Death
Univariate 0.006 0.008 0.009 0.015
Multivariate 0.007 0.010 0.003 0.010
Removal
Univariate 0.004 0.024 0.012 0.021
Multivariate 0.020 0.016 0.019 0.013
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Table 3.6: Bias and RMSE of the group effect on the probability of transition
to state Transplanted (TT) and the effect on history in multinomial models for
Markov Model (Scenario II) and non-Markov model (Scenario IV), adjusted for
time and current state. Baseline category is probability of death.

Markov Model
n=500 n=1000

Bias RMSE Bias RMSE
P(TT)/P(D) -0.054 -0.209 0.042 0.163
Previous=T
P(TT)/P(D) -0.068 -0.255 0.045 0.223
Non-Markov Model (Scenario III)

n=500 n=1000
Bias RMSE Bias RMSE

P(TT)/P(D) -0.055 0.174 -0.018 0.157
Previous=T
P(TT)/P(D) -0.072 0.249 -0.036 0.208
P(T)/P(D) -0.292 0.366 -0.201 0.352
Non-Markov Model (Scenario IV)

n=500 n=1000
Bias RMSE Bias RMSE

Previous=T
P(T)/P(D) -0.194 0.351 -0.172 0.277
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Table 3.6 illustrates the group effect from the multinomial model con-

ditional on the previous state Transplantable adjusted for time and current

state. For the data simulated from two non-Markov models we observe

smaller bias and RMSE for the effect on the history P (T )/P (D) for the

Scenario III when there is no effect on the probability of the transition to

TT, namely on P (TT )/P (D). For P (TT )/P (D) in non-Markov model from

Scenario IV obtained with no conditioning on the previous state we observed

comparable bias and RMSE as in Markov model. Conditioning on the pre-

vious state when estimating P (TT )/P (D) results in larger bias and RMSE

which is something to be expected since we take only subset of all transi-

tions. Even when conditioning on the previous state the RMSE and bias for

P (TT )/P (D) are smaller than for the effect on the history P (T )/P (D).

In an analogous manner a group effect on the transition intensity to

non-final state was simulated. For this scenario the pseudo-value approach

detected only the group effect on the occupational probability of absorbing

states in non-Markov model. The multinomial model was able to capture

the simulated group effect on transition to T both in the Markov and non-

Markov models (results not shown).

We have simulated the dependence on the history through the last state

since that was suspected for the analyzed real data. However, the true

dependence of the process could be more complicated. The simulation study

demonstrated that the pseudo-values approach can capture the group effect

of the transition intensity to one final state on the occupational probability

of all final states of such a non-Markov model. Additionally multinomial

model was able to capture also the effect related to the history.
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3.5 Discussion

Motivated by study on patients on the waiting list for heart transplantation,

in this paper we presented two approaches for analyzing multi-state data for

which the Markov assumption is not defensible. In particular, we use the

pseudo-values approach to estimate the effects of baseline covariates on the

occupation probabilities when the history dependence is a nuisance. When

the interest is in a dependence history the additional information can be

derived from the multinomial model approach. Both approaches are sim-

ple in principle and can be easily implemented for any general non-Markov

multi-state model. We observed less efficiency in the multinomial approach

in estimating the history effects than for the effects on the transition to the

final state. We should consider rather series of multinomial models with

the fixed time point in each model and for each of these models we should

consider the subset of individuals that have made a transition in that fixed

time point. Since in our case the transition times are very dense and change

rather continuously, it is very hard to find the reasonable large group of

individuals with the same transition time. The pseudo-values approach re-

quires independent censoring. One can however relax that assumption to

conditional independence of censoring and event times given covariates and

then apply an inverse probability of censoring weighting techniques [83]. The

method was recently extended for the case of clustered time-to-event data

in competing risk model by Logan et al. [84]. So far pseudo-values approach

was mainly evaluated using the simulation results [45, 64, 68]. Based on the

simulation studies the choice of the number of time points, their location and

also the choice of the correlation matrix in a GEE model was shown to have
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an impact on the results. The impact of the number of time points was also

demonstrated in our simulation study. We have observed an increased effi-

ciency for the multivariate pseudo-values approach comparing to univariate

model. The efficiency also increased for larger sample size and more time

points in GEE model . Adjusting for the optimal number of time points

could be more problematic for the occupation probabilities of non-absorbing

states since they usually exhibit a non monotonic behavior. These aspects

need to be further studied as well as the assessment of the goodness-of-fit

and the choice of link function in GEE models.

3.6 Supplementary Materials

Supplementary materials are available online at http://smj.sagepub.com.
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Chapter 4

Nominal Longitudinal Response

In this chapter we present Bayesian approach to jointly model

the performance of patients described by their categorical status

that changes in time while waiting for the new organ together

with the survival time on the waiting list. The model accounts

also for the presence of competing risks due to the fact that pa-

tients are delisted from the list because of death, after transplanta-

tion or because of other reasons. Bayesian model constitutes the

submodel for longitudinal categorical response being multinomial

logit mixed-effects model and the cause-specific hazard model that

shares the same random effects with each logit of the multino-

mial logit mixed-effects model. We illustrate how the fitted joint

model can be used for the dynamic prediction of the cumulative

incidence functions as well as the categorical response based on

their available longitudinal measurements of that response. We

also investigate the impact of different parameterizations of the

77
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joint model on the dynamic predictions in a simulation study.

4.1 Introduction

In transplantation studies longitudinal measurements are often collected for

patients waiting for an organ transplant. For such patients it is often of

interest to investigate whether available longitudinal measurements can be

used for predicting patient survival as well as further performance on the

waiting list. The motivation for this work comes from the Eurotransplant

heart recipients registry with 2921 recipients entering the waiting list in a

period of three years. Each recipient was classified to one of the following

states: Transplantable (T), Non-Transplantable (NT), Urgent (U) and High

Urgent (HU). A graph depicting all possible transitions between the states

is presented in Figure 4.1. The evaluation time was different for each pa-

tient and depended on the previous classification meaning that more severe

patients were evaluated more frequently. The first evaluation took place at

entry and additional evaluations were performed while the patient remained

on the waiting list. Upon the censoring date, 528 patients had died (D) with-

out receiving a transplant, 1565 patients received a transplant (TT) and 239

patients had been removed (R) because of other reasons. The purpose of the

study is to predict the state of the patient and to estimate the risk of any

of the 3 competing events (TT, R, D) based on the history of states on the

waiting list with adjusting for baseline covariates.

The majority of prognostic models in the medical literature utilize only a

This chapter has been submitted for publication as “Dynamic prediction based on
joint model for categorical response and time-to-event with application in transplantation
studies” in Biostatistics
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Figure 4.1: Graph of all possible transitions between the states.

small fraction of the available biomarker information. Even though biomark-

ers are measured repeatedly over time, risk scores are typically based on the

last available biomarker measurement. Such an approach discards valuable

information because it does not take into account that the rate of change

in the biomarker levels is not only different from patient to patient but also

dynamically changes over time for the same patient. Hence, it is medically

relevant to investigate whether repeated measurements of a biomarker can

provide a better understanding of disease progression. In particular, for the

Eurotransplant clinicians the possibility of updating prediction of the risk

of death based on the changing urgency status for a specific patient allows

to make an intervention such as putting her at the top of the waiting list,

in order to improve the chance of survival of that patient. Motivated by

these arguments in this work we propose a joint modeling approach for pro-

ducing dynamic predictions of the future status of a patient in the list and
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her chance for getting a transplant, being removed from the list or dying.

In particular, we model the urgency status as a categorical longitudinal re-

sponse variable , which is assumed to be associated with the competing risks

process of leaving the list. We follow a Bayesian approach for estimating the

joint model based on which we derive posterior predictive distributions for

the longitudinal and event time outcomes. Additionally, we also examine the

impact of the different parameterizations of the joint model on the obtained

predictions. By the different parameterizations we mean different functional

relationship between the longitudinal and time-to-event outcomes.

Dynamic predictions have been so far studied only for continuous longitu-

dinal outcome ( [85], [86]). Categorical longitudinal responses have received

much less attention in the joint modeling framework and the proposed ap-

proaches mainly handle nonrandom dropouts for discrete longitudinal data,

also in Bayesian approach ( [16, 18, 27, 28, 86–89]). Similarly in the context

of competing risks the proposed joint models focus mainly on joint analysis

of survival and repeated continuous or ordinal biomarkers, using either a

likelihood ( [33, 34]) or a Bayesian approach [36]. We propose a Bayesian

model for joint modeling of categorical longitudinal data and time-to-event

response in presence of competing risks. Following [86] we use the Monte

Carlo approach to obtain dynamic subject-specific predictions based on the

fitted joint model. The predictions of the cumulative incidence functions

and the categorical longitudinal response are updated as additional mea-

surements of the longitudinal response become available. Our approach can

be applied using standard software (OpenBUGS/WinBUGS) with additional

programming to compute the dynamic predictions.

The rest of the paper is organized as follows. Section 4.2 provides the
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general modeling framework with the definition of the two submodels for

the longitudinal and survival data, respectively. Section 4.3 describes the

estimation methods for the proposed approach. Section 4.4 provides more

details regarding the sampling procedure used for the dynamic prediction for

the cumulative incidence function and the longitudinal response. In Section

4.5 we apply the proposed approach to the heart transplant data. Section

4.6 contains the setup and the results for the simulation study. Finally, in

Section 4.7 we discuss the proposed methodology.

4.2 Joint Modeling Framework

4.2.1 Submodels specification

Let {Yi(t) = r, r = 1, 2, . . . , R} denote the response category for individual i

(i = 1, . . . , N) at time t, and let tij (j = 1, . . . , mi) denote the time points at

which measurements are taken for this subject. To model Yi(t) we postulate a

multinomial mixed effects model. In particular, the probability that at time

t the longitudinal response Yi(t) is equal to r conditional on the random

effects bi is given by:

pir = Pr (Yi(t) = r | bi) = exp{wir(t)}
/[

1 +
R∑

h=2
exp{wih(t)}

]
, and

pi1 = Pr (Yi(t) = 1 | bi) = 1
/[

1 +
R∑

h=2
exp{wih(t)}

]
, (4.1)

where wir(t) = xT
i (t)αr + zT

i (t)bir, xi(t) is the design vector of fixed effects

and zi(t) is the design vector for the random effects bi, b
T
i = (bT

i1, ..., bT
iR).
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Therefore for each category r we postulate a different random vector bir.

In such type of models usually the random effects bir are treated as in-

dependent multivariate normal variables. We opt for using an arbitrary

covariance matrix D and assume that bi ∼ N(0,D) for a complete vec-

tor bT
i = (bT

i1, ..., bT
iR). For the survival process we consider K different

causes of failure, with T ∗
i1, T ∗

i2, . . . , T ∗
iK denoting the true failure times for

individual i. Since the failure times are right censored we observe only

Ti = min(T ∗
i1, T ∗

i2, . . . , T ∗
iK , Ci), where Ci is the censoring time with the fail-

ure indicator ∆i ∈ {0, 1, . . . , K}, which equals 0 if the subject was censored

and 1, . . . , K for the corresponding competing event. We assume that cen-

soring is at time t is independent of future failures as well as of future longi-

tudinal responses. For each of the K causes we postulate a standard hazard

model that shares all random effects bir with the multinomial logit model:

λik(t) = lim
s→0

Pr(t ≤ T ∗
i < t + s, ∆i = k | T ∗

i ≥ t)/s

= λ0k(t) exp(γT
k fi(t, bi) + βT

k vi), k = 1, . . . , K, (4.2)

where bT
i = (bT

i2, . . . , bT
iR), vi is a vector of baseline covariates, and λ0k(t)

is the baseline hazard that can be modeled parametrically or left unspeci-

fied. Parameters γT = (γT
1 , . . . ,γT

k ) measure the strength of the association

between the longitudinal and survival processes .

We will consider two options for the function f(· ). First, we name the

Random-Effects Model (R-E) the model (B.2.1) with fi(t, bi) = bi in which

case the submodels (B.2.1) and (B.2.1) for the longitudinal and survival

processes share only random effects. Second, we name Time-Dependent



4.2 Joint Modeling Framework 83

Model (T-D) the model (B.2.1) with fi(t, bi) = wi(t) for which we will

allow both submodels to share also linear time-dependent terms from the

multinomial mixed model, i.e.:

(R-E) : λik(t) = λ0k(t) exp(γT
k bi + βT

k vi), k = 1, 2, . . . , K, (4.3)

(T-D) : λik(t) = λ0k(t) exp(γT
k wi(t) + βT

k vi), k = 1, 2, . . . , K, (4.4)

where bT
i = (bT

i2, bT
i3, . . . , bT

iR) and wi(t) = {wi2(t), . . . , wiR(t)}.

Within the (T-D) formulation there are more than one parameterizations

possible depending on which terms wir(t) are shared by each of the hazard

relative risk submodels. In particular, one may consider the parametrization,

for which all R − 1 linear predictors wir(t), r = 2, . . . , R, from longitudinal

part are shared with survival model:

(T-D) : λik(t) = λ0k(t) exp(
∑R

r=2 γkrwir(t) + βT
k vi), k = 1, 2, . . . , K.(4.5)

In principle one may choose any subset of R−1 linear predictors wir(t) to be

shared in (4.4) leading to 2R−1 − 1 possible parameterizations of a survival

submodel for a given failure cause k. Some of the linear predictors can be

reduced to only random effect shared. That results in total 3R−1 −1 possible

submodels for a given k. The number of possible parameterizations increases

if one would consider also parameterizations, for which a particular function

of a linear predictor is shared. Within any of these formulations the same

random effects account for both the association between the longitudinal and
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event outcomes, and the correlation between the repeated measurements in

the longitudinal process .

4.3 Estimation

4.3.1 Full likelihood framework: Bayesian approach

In the standard joint modeling framework the estimation is typically based

on maximum likelihood or Bayesian methods ( [9, 16, 25, 33, 89, 90]). This

proceeds under the following set of conditional independence assumptions:

p(Ti, ∆i,Yi | bi;θ) = p(Ti, ∆i | bi;θt)p(Yi | bi;θy) (4.6)

p(Yi | bi;θy) =
mi∏
j=1

p(Yi(tij) | bi;θy), (4.7)

where θT = (θT
y ,θT

t ,θT
b ) is a vector of parameters from the longitudinal and

survival submodels and the vector of the random effects, respectively. In

particular, we assume that given the random effects the longitudinal pro-

cess is independent from the event times, and moreover, the longitudinal

measurements are independent from each other.

Here we will proceed under the Bayesian paradigm to estimate the model

parameters. The likelihood contribution for the ith subject conditionally on

the random terms is given by:

p(Yi, Ti, ∆i | bi;θ) = p(Yi | bi;θy)p(Ti, ∆i | bi;θt)
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=
K∏

k=1

[
λ0k(Ti) exp{γT

k fi(bi, Ti)}
]I(∆i=k) exp

−
K∑

k=1

Ti∫
0

λ0k(t) exp{γT
k fi(bi, t)}dt



×

1 +
R∑

r=2
I(yir = r) exp{wir(tij)}

1 +
R∑

r=2
exp{wir(tij)}


mi

. (4.8)

Under the conditional independence assumptions (4.6) and (4.7) the poste-

rior distribution of the parameters and the latent terms, conditional on the

observed data, are derived as:

p(θ, bi | Ti; ∆i;Yi) ∝
N∏

i=1


mi∏
j=1

p(Yi(tij) | bi;θy)

 p(Ti, ∆i | bi;θt)

×p(bi;θb)p(θy,θt,θb),

(4.9)

where p(· ) denotes the appropriate probability density function.

To model each cause-specific risk from (B.2.1) a piecewise constant hazard

model was chosen with a step function baseline hazard with L = 5 quan-

tiles and change points t1, t2, . . . , tL assuring the same number of events of

any cause between those time points. Let t0 denote the start of the fol-

low up, t5 the maximum censoring time and λ0k(t) baseline hazard function

for the time interval [tι, tι+1], ι = 0, 1, . . . , L. Then for different intervals

for a given cause k we specify a separate prior hazard mean λ∗
0kι(t) and

λ0kι(t) ∼ Gamma(cλ∗
0kι(t), c), where λ∗

0kι(t) is a prior mean hazard for cause

k with c being a scaling parameter. For the priors of the model parameters we

make standard assumptions following [25]. In particular, for the regression
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coefficients αT = (αT
1 ,αT

2 , . . . ,αT
R) of the longitudinal submodel and for the

coefficients γT = (γT
1 ,γT

2 , . . . ,γT
K) of survival submodel we used multivari-

ate normal priors. For variance-covariance matrices we assumed an inverse

Wishart distribution and for the variance-covariance parameters we took an

inverse-gamma prior. For all parameters vague priors have been chosen. The

results were not sensitive with respect to the choice of the hyperparameters

as long as the priors were sufficiently diffuse. When the longitudinal and

survival submodels share only the random effects bi then the integral over

time in the likelihood expression(4.8) has of a closed-form solution. When

the two submodels (B.2.1) and (B.2.1) share also time-dependent terms, the

integral:

Ti∫
0

λ0k(t) exp{γT
k fi(bi, t)}dt. (4.10)

is approximated numerically using the Gauss-Kronrod rule with Q=15 quadra-

ture points [91]. Therefore we obtain:

Ti∫
0

λ0k(t) exp{γT
k fi(bi, t)}dt ≈

Q∑
q=1

ωqλ0k(ξq) exp{γT
k fi(bi, ξq)}, (4.11)

where ξq and ωq, q = 1, . . . , Q denote the Gauss-Kronrod quadrature points

and weights, respectively.
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4.4 Dynamic Prediction of Longitudinal Tra-

jectories and CIF

Based on the fitted model, and for a new subject l for the same population for

whom we have a set of longitudinal measurements Yl(t) = {Yl(s); 0 ≤ s ≤ t}

available, our aim is to obtain predictions of conditional cumulative incidence

probabilities CIFkl for each cause of failure k and predictions of her future

longitudinal responses . In the context of our motivating example, we are

interested in predicting the future status of the patient in the waiting list,

i.e., T, NT, U and HU, and the chance of the patient leaving the waiting

list due to TT, D or R. We first focus on predictions of cumulative incidence

probabilities. Let θ denote the vector of parameters from the joint model

and Sn the sample of size n on which the joint model was fitted, Sn =

{Ti,Yi, ∆i; i = 1, 2, . . . , N}. For a specific cause k we are interested in the

conditional probability of experiencing event k before time u > t given that

the subject has not experienced any event up to t:

CIFkl(u | t) = Pr(T ∗
lk < u | T ∗

l (t), Yl(t)), T ∗
l (t) = {T ∗

l1 > t, . . . , T ∗
lk > t}.

(4.12)

Note that CIFkl(u | t) has a dynamic nature because when new information

is recorded for a patient l at time t′ > t, we can update these predictions

and obtain CIFkl(u | t′) for u > t′. Following [86] and [41], we derive the
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posterior predictive distribution of CIFkl(u | t) as:

CIFkl(u | t) =
∫

Pr (T ∗
lk < u | T ∗

l (t), Yl(t); θ) p(θ | Sn)dθ. (4.13)

The first term of the integrand in (4.13) can be written as:

Pr (T ∗
lk < u | T ∗

ι (t), Yl(t);θ)

=
∫

Pr (T ∗
lk < u | T ∗

l (t), bl;θ) p (bl | T ∗
l (t), Yl(t),θ) dbl. (4.14)

Therefore when combining (4.13) and (4.14) a Monte Carlo approach can

be used to compute CIFkl(u | t) for each patient and CIFkl(u | t′) can be

updated for every time point t′ > t. To derive an estimate of CIF we use

the following Monte Carlo sampling scheme:

Step 1: sample θ(ℓ) from the posterior p (θ | Sn)

Step 2: sample b
(ℓ)
l from the posterior p

(
bl | T ∗

l (t), Yl(t);θ(ℓ)
y

)
Step 3: compute CIF

(ℓ)
kl (u | t, b

(ℓ)
l ;θ(ℓ))

Step 4: repeat Steps 1-3, ℓ = 1, . . . , Ł.

As a final prediction of the CIFkl(u | t, bl;θ) we use the median over the Ł

Monte Carlo samples together with the Monte Carlo percentiles as confidence

intervals.

Step 1 takes into account the variability in Bayesian estimates of θ ob-

tained from the fitted joint model and Yl denotes the whole observed longi-



4.4 Dynamic Prediction of Longitudinal Trajectories and CIF 89

tudinal profile for individual l. In Step 2 we utilized a Metropolis-Hastings

algorithm to sample from {bl | T ∗
l (t), Yl(t);θ(ℓ)} with proposals from a mul-

tivariate t distribution and df=4 centered at the empirical Bayes (EB) esti-

mates b̂l. These EB estimates were obtained by maximizing the expression:

b̂l = arg max
b

[
log Pr

(
T ∗

ι (t) > t | θ̂y

)
+ log Pr (Yl(t) | θy) + log p(b | θ̂y)

]
,

(4.15)

where θ̂y are the parameters estimates obtained from the joint model for the

longitudinal part.

The low number of degrees of freedom was chosen to ensure that the

proposal density has heavy tails to provide sufficient coverage of the target

density {bl | Yl,θ}. The variance-covariance matrix from the joint model

was additionally scaled by some tuning parameter allowing to control the

acceptance rate through the range of the proposed distribution. Usually

a small number of iterations (100-500) is sufficient for the purpose of cal-

ibration. More details about the Metropolis-Hastings acceptance-rejection

procedure can be found in the supplementary material (part C). In order to

compute CIF
(ℓ)
kl (u | t, b

(ℓ)
l ;θ(ℓ)) in Step 3 using (4.13) and (4.14) we need to

calculate:

Pr
(

T ∗
lk < u | T ∗

l (t), Yl(t), b(ℓ)
l ;θ(ℓ)

)
= Akl(u | t)/S(t),

Akl(u | t) =
u∫
t

λ0k(s) exp{γT
k fl(b(ℓ)

l , s)} exp
[

−
∑K

κ=1

t∫
0

λ0κ(s) exp{γT
κ fl(b(ℓ)

l , s)}ds

]
,

Sl(t) = exp
[

−
∑K

k=1

t∫
0

λ0k(s) exp{γT
k fl(bl, s)}ds

]
.

(4.16)
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In the simple case with only random effects shared between the longitudinal

and risk submodels , i.e. fi(bi, t) = bi the integral in (4.17) is of a closed

form. When also time-dependent terms are shared, the integral has to be

computed numerically and we use again a 15-point Gauss-Kronrod rule. In

an analogous manner dynamic predictions for a future longitudinal response

were calculated applying a similar sampling procedure:

Step 1: sample θ
(ℓ)
y from the posterior p (θy | Sn)

Step 2: sample b
(ℓ)
l from the posterior p

(
bl | T ∗

l (t), Yl(t);θ(ℓ)
y

)
Step 3: compute p(Yl | b(ℓ)

l ;θ(ℓ)
y )

Step 4: Repeat Steps 1-3, ℓ = 1, . . . , Ł

Here in Step 3 in order to obtain a prediction for Pr(Yl | b(ℓ)
l ;θ(ℓ)

y ) we

need to calculate:

Pr
(

Yι(t) = r | θ(ℓ)
y

)
= exp(wlr(t))

/{
1 +

R∑
h=2

exp(wih(t))
}

.

(4.17)

4.5 Analysis of the Heart Data

We return to the analysis of the heart data introduced in Section 4.1. This

data were taken from an international data base of the Eurotransplant Heart

recipient waiting list. A total of 2921 recipients entered the waiting list

from 01.01.2006 until 31.12.2008. Recipients observation was censored at

31.03.2010. Baseline information was also collected for the patients when

entering the list, namely: age, country of origin (7 countries) and blood
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group. We will first consider the simple version of the longitudinal submodel

(B.2.1) with time as fixed effect and random intercepts only. Therefore for

each transient state Transplantable (T), Non-Transplantable (NT), Urgent

(U) and High Urgent (HU) we have:

wir(t) = α0r + α1rt + bir, r = 2, 3, 4, (4.18)

where for the baseline category (r=1) we choose state NT.

For the survival process we have considered first the simple parametriza-

tion of the joint model, namely when only random effects are shared (R-E):

(R-E) : λik(t) = λ0k(t) exp(γT
k bi + βT

k vi), k = 1, 2, 3, (4.19)

where bT
i = (bi2, bi3, bi4).

Then we fitted more complicated models when also the time dependent

terms are shared (T-D). The choice of the shared terms in those models

was medically motivated. For the illustration purposes we present here only

three versions of (T-D) parameterizations with the best fit assessed based

on Deviance Information Criterion (DIC). Therefore for each of the three

competing events: Death (D), Transplantation (TT) and Removal (R) we

have the following model for the survival part:

(T-D) : λik(t) = λ0k(t) exp(γT
k fik(t) + βT

k vi), k = 1, 2, 3. (4.20)

where bT
i = (bi2, bi3, bi4).
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For the first parametrization (T-D I) only the cause-specific submodel

for Death event shares the time-dependent term, which is the log proba-

bility of being in state NT. Therefore we have: fi1(t) = (wi2(t), bi3, bi4)

and fik(t) = (bi2, bi3, bi4) for k = 2, 3. For the second parametrization

(T-D II) additionally the cause-specific submodel for Removal shares the

time-dependent term which is the log probability of being in state HU.

Therefore, we have fi1(t) = (wi2(t), bi3, bi4), fi2(t) = (bi1, wi3(t), bi4) and

fi4(t) = (bi2, bi3, bi4). Finally for the last parametrization (T-D III) the

cause-specific submodel for Transplantation shares the time-dependent term

which is the log probability of being in state U, i.e: fi3(t) = (bi2, bi3, wi4(t))

and fik(t) = (bi2(t), bi3, bi4) for k = 1, 2.

The vector vi of baseline covariates consists of: age, blood group and IC

binary covariate indication whether patients comes from the country with

informed consent required (IC=1) or with the presumed consent for do-

nation. The analysis has been performed using the R Statistical Software

and the joint Bayesian model was fitted using OpenBUGS . Separate code

was written by the first author for the dynamic predictions. The specific

specification of the priors we used in this analysis was as follows. For the

p × p variance-covariance matrices of multivariate normal priors we used

inverse Wishart distribution with p degrees of freedom. For the piecewise

constant baseline risk parameters in the cause-specific survival submodels a

Gamma(10−3,10−3) prior was used. We chose the scaling parameter c in the

gamma prior to be equal 0.001 and a prior mean λ∗
0kι(t) = 0.1. We did not

observe any substantial difference for the different values of parameter c as

long as c was small enough to keep the prior noninformative. Too small val-

ues of the scaling parameter c are not recommended as they can lead to the
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Figure 4.2: Dynamic prediction of probabilities for the three longitudinal urgency
categories from model with only random effects shared (solid) and different
parameterizations with time-dependent terms (dashed: T-D I, dotted: T-D II,
dash-dotted: T-D III) for an arbitrary individual with blood group B and non-IC.
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computation problems. In order to assess convergence for the joint Bayesian

model standard MCMC diagnostic plots were used. The burn-in size was

set to 10,000 iterations, which was chosen based on the visual inspection of

the trace plots, and confirmed by the Raftery and Lewis diagnostics. The

same number of iterations were used for constructing the summary statis-

tics. Based on the autocorrelation plots we have chosen every 30th iteration.

Therefore in total to obtain 10,000 iterations for the final inference 30,0000

iterations were required after the burn-in part. Additionally we run a sec-

ond parallel chain and used Gelman and Rubin diagnostic plots to assess the

convergence ( [92]).

Based on the fitted models we have constructed dynamic predictions

for the parameterizations (B.14) and (4.20) according to the Monte Carlo

sampling procedure described in Section 4.5. We generated 1000 Monte

Carlo samples for each update of the prediction. The estimates of the joint

model obtained for some of the subsets considered for the Heart Data for

the parametrization (B.14) and the three versions of parametrisation (4.20)

are given in the Supplementary material C. The dynamic prediction plots

allowed clinicians to conclude that the chance of transplantation from HU

was the highest at the early times on the waiting list and decreased with

time, especially as patient experienced long stable period in T before HU.

Figures 4.2 and 4.4 illustrate the comparison of the dynamic prediction of

longitudinal response and CIF for different parameterizations of the joint

model. The prediction is constructed for an arbitrary individual with blood

group B and non-informed consent (IC=0). As can be observed the CIF

prediction is strongly affected by the parametrization of the joint model.

This discrepancy does not diminish as more longitudinal measurements are
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Figure 4.3: Dynamic prediction of cumulative incidence functions for half year
ahead from model with only random effects shared (R-E) and different param-
eterizations with time-dependent terms (TD I, TD II, TD III) for an arbitrary
individual with blood group B and non-IC.
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Figure 4.4: Dynamic prediction of cumulative incidence functions from model
with only random effects shared (solid) and different parameterizations with
time-dependent terms (dashed: T-D I, dotted: T-D II, dash-dotted: T-D III) for
an arbitrary individual with blood group B and non-IC.
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available. It is also depicted on Figure 4.3 which presents the predicted

CIF depending on the prediction time and different parameterizations. DIC

criterion implied the choice of T-D I model as the best one. For most of

the parameterizations we did not observe substantial impact on the dynamic

predictions for the longitudinal response (Figure 4.2).

4.6 Simulations

4.6.1 Design

We performed a simulation study to evaluate the misspecification of the as-

sociation structure between the longitudinal and survival process considering

different association strength in presence of that misspecification. A number

of simulations have been conducted to investigate the impact of these two

aspects on the accuracy of (dynamic) predictions, especially for the CIF. In

particular we performed a limited simulation study of two different scenarios

with 200 samples per each. As comparing to the real data set we simpli-

fied the simulated model to three categories for the categorical longitudinal

response and only two competing events in the survival part. In both lon-

gitudinal and survival part we have simulated a group effect of a binary

factor.

For the first scenario (I) we simulated data from the model with only

random effects shared corresponding to the parametrization (R-E), for the

heart data set. In the second scenario (II) we simulated data from the joint

model with time-dependent terms shared with one different logit shared by

each survival submodel that corresponds to the parametrization (T-D II)

used for the heart data.
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For the longitudinal part the data were simulated for 100 patients from

model (B.17) with α0r = −1, α1r = 0.5 and α2r = −2, r = 2, 3. The sample

size corresponds to the smallest subset from the real data for which the

model was fitted in order to study the interactions. The variance-covariance

matrix D of the random effects was chosen to be non-diagonal with D11 =

0.11,D12 = −0.08,D33 = 0.27 corresponding to the variance-covariance

matrix obtained for the state HU and U from the real data. We simulated

a maximum follow-up time of 4 years. The residual variance σ2 for the

longitudinal response on the logit scale was chosen to be 0.25, corresponding

to the results obtained for the real data set.

Survival times were simulated from bivariate time-to-event distributions

using the Clayton copula C(τ1, τ2) =
(

τ−ϕ
1 + τ−ϕ

2 − 1
)−1/ϕ

, 0 ≤ τ1, τ2 ≤

1, ϕ > 0 with ϕ = 15. The aim was to reflect the correlation between the

two survival responses even if in the competing risk setting we cannot asses

this correlation since only one survival response is observed for each subject.

The Clayton copula exhibits strong left tail dependence and weak right tail

dependence. Therefore it allows early survival probabilities to be strongly

correlated reflecting the higher correlation after the long time on the waiting

list in the transplantation setting. We used baseline Weibull hazards with

shape parameters equal 2.02 and 3.07 for the first and second survival re-

sponse and scale parameters equal 1. For each marginal survival we simulated

the group effect β1 = 0.03 and β2 = 0.03. For Scenario A the association

parameters were chosen to be γ1 = (0.8, 0.5) for the first survival submodel

and γ2 = (0.5, 0.8) for the second cause-specific survival submodel. Addi-

tionally for scenario B we simulated data with larger association parameters

γ1 = (1.8, 1.5) and γ2 = (1.5, 1.8). The censoring mechanism was simulated
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independently using an exponential distribution Exp(λC). Parameter λC

was changed in order to control proportion of censored observations. We

kept 20% of censoring as in original data set and simulated 70% and 10%

of events which corresponds to the smallest percentage of events in the real

data set observed for the incidence of removal.

The simulation settings are summarized below:

Scenario I Scenario II

A : γ1 = (0.8, 0.5), γ2 = (0.5, 0.8), A : γ1 = (0.8, 0.5), γ2 = (0.5, 0.8),

B : γ1 = (1.8, 1.5), γ2 = (1.5, 1.8), B : γ1 = (1.8, 1.5), γ2 = (1.5, 1.8),

wir(t) = α0r + α1ru + α2rGroup + bir, wir(t) = α0r + α1ru + α2rGroup + bir,

λik(t) = λ0k(t) exp(γT
k bi + βkGroup), λik(t) = λ0k(t) exp(γT

k fi(t) + βkGroup),

k = 1, 2, r = 1, 2, fi(t) = (wi2(t), wi3(t)), k = 1, 2, r = 1, 2.

(4.21)

For each simulated data set we have fitted the three versions of the joint

model, namely (R-E), (T-D II) and additionally a model with one different

logit shared by each cause-specific survival submodel that corresponds to the

(T-D I) model fitted for the heart data:
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(R-E): λik(t) = λ0k(t) exp(γT
k bi + βkGroup), k = 1, 2,

(T-D I): λik(t) = λ0k(t) exp(γT
k fi(t) + βkGroup),

fi1(t) = (wi2(t), bi3), fi2(t) = (bi2, wi3(t)) (4.22)

For both scenarios we compared the prediction of cumulative incidence func-

tions from different parameterizations with the prediction based on the gold

standard model with the true parametrization and true values for the random

effects and the parameters. In order to quantify the differences between the

predicted and true CIFs we have considered prediction for 10 arbitrary cho-

sen individuals with minimum 4 measurements of the longitudinal response

that were randomly removed from each simulated data set before fitting any

model. For each of these individuals we calculated the root mean squared

error between the assumed model under each scenario and the gold standard

predictions using 10 equally spaced time points in the interval from the next

6 months till 12 months ahead. We investigated how the distance from the

true CIF changes as the prediction was updated. Since the simulated time

points were fixed each individual could have the updated prediction in the

same time points as long as he did not experience any event. Within every

scenario we plot separate box plots for a given time point, in which the pre-

diction for the chosen individuals was updated, averaged over all simulated

data sets, for the two competing events separately.

All the prior settings, size of burn-in, number of M-H iterations etc. were

the same as for the real data analysis. Computations have been performed

in cluster with 20 nodes with AMD Quad-Core Opteron 835X, 4 x 2GHz
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and 16GB RAM per node.

4.6.2 Results

In Figures 4.5 and 4.6 the results for 200 simulated data sets of scenario

IA, IB, IIA and IIB are presented. They depict the box plots for RMSE

between prediction from the assumed model under each scenario and the

gold standard predictions for the 10 chosen individuals, averaged over the

simulated data sets. The RMSE are updated for m=2, 3 and 4 longitudinal

measurements available.

It can be observed that RMSE for the CIF predicted from the mod-

els with misspecified parametrizations increases as more measurements are

recorded. For the CIF with true parametrization RMSE can also increase

if there is not enough number of events to estimate the survival submodel

correctly (Event 1 in Scenario A). RMSE for Event I from model T-D I

and T-D II are similar since the survival submodel for event 1 has the same

parametrization in both models. Analogically for Event 2 RMSE for R-E

model are close to RMSE from T-D I model. For Scenarios IB and IIB with

larger association parameters the discrepancies from the true model are more

severe for the misspecified survival submodels from the Scenario II. When

the true model shares only the random effects the increasing association pa-

rameters between the longitudinal and survival part will not affect strongly

the prediction from misspecified parameterizations (T-D I) and (T-D II) as

the prediction is more affected by the increasing time-dependent term than

by the updated random effect. Contrary when the true model is simulated

from parametrization (T-D II) the CIF from misspecified models is much

more affected for larger parameters γ as they are associated with the omit-
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Figure 4.5: RMSE of the distance between the prediction from the gold standard
model and the three fitted joint models (R-E,T-D I,T-D II) for the simulated
scenario IA (a,b) and IB (c,d) .
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Figure 4.6: RMSE of the distance between the prediction from the gold standard
model and the three fitted joint models (R-E,T-D I,T-D II) for the simulated
scenarios IIA (a,b) and IIB (c,d).
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ting time-dependent terms. The overestimation of the random effects does

not influence seriously the dynamic prediction in any scenario since the sim-

ulated variance is small, especially for the random effect from the first logit

of the longitudinal submodel. The distance from the true model was larger

for more distant prediction (results not shown).

4.7 Discussion

We have presented a method to calculate individual prediction of survival

and longitudinal responses that can be updated as more measurements of

the longitudinal response is available for a particular patient. Predictions are

based on the fitted joint model for the longitudinal and survival responses

and requires specification of two separate submodels for the longitudinal

and time to event data part that share only random effects and also possibly

time-dependent terms.

The presented method allows to handle the variability of the subject-

specific longitudinal profiles when modeling survival using the whole history

of the observed longitudinal response. This has a great advantage as com-

pared to other statistical framework such as non-Markov models where the

history of the process is if an issue and no standard approaches are available.

The method generalizes for any type of longitudinal responses and non- lon-

gitudinal responses such as continuous, ordinal, binary. Therefore dynamic

predictions are particularly useful in all observational studies where patients

are observed along time and different kind of measurements reflecting their

current health status are collected. The presented approach allows to handle

more than one survival response, such as in competing risks setting. This
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is a typical setting in transplantation studies where patients waiting for an

organ can be delisted due to the death or transplantation. Using the avail-

able shiny package an interface for the R code can be written resulting in a

user-friendly tool for producing dynamic predictions. That tool can be used

for everyday general clinical practice.

The construction of dynamic predictions requires a single fit of the joint

model with a bit of additional code for Metropolis-Hastings sampling. Fitting

joint model can be performed using Bayesian methods and standard software.

That could be time-consuming, especially for many submodels that share

time-dependent terms. For the model with only random effects shared an

alternative two-stage methods could be considered.

As it was demonstrated, the chosen parametrization for joint model in-

fluences mainly the prediction for the survival part and much less the lon-

gitudinal response. Since we have many repeated measures per individual

there is a lot more information about the longitudinal process than for the

survival process in that setting. Even with non-random dropout the longitu-

dinal part is therefore not seriously affected by the survival. The simulation

results indicate that the misspecification of the joint model omitting the

time-dependent terms is most severe for the strong association between the

survival and longitudinal process. In practice one does not have a gold stan-

dard model and would like to choose the best model from the set of models

with different parameterizations. When Bayesian methods are used for the

joint model estimation, a DIC or other Bayesian criterion could be consid-

ered. However, due to the well-known limitations of such criteria, we are

currently working on developing more general measures that would allow to

choose the best model based on the quality of the produced predictions in
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terms of calibration and discrimination, regardless the estimation method.

4.8 Software

The code for the Bayesian joint models with different parameterizations as

well as the R code for the sampling procedure is available upon request from

the first author.

4.9 Supplementary Material

Supplementary materials are available online at:

http://biostatistics.oxfordjournals.org.
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Chapter 5

Joint Modeling vs Landmarking

A key question in clinical practice is accurate prediction of patient

prognosis. To this end, nowadays, physicians have at their dis-

posal a variety of tests and biomarkers to aid them in optimizing

medical care. These tests are often performed on a regular basis

in order to closely follow the progression of the disease. In this

setting it is of medical interest to optimally utilize the recorded

information and provide medically-relevant summary measures,

such as survival probabilities, that will aid in decision making.

In this chapter we present and compare two statistical techniques

that provide dynamically-updated estimates of survival probabili-

ties, namely landmark analysis and joint models for longitudinal

and time-to-event data. Special attention is given to the func-

tional form linking the longitudinal and event time processes, and

to measures of discrimination and calibration in the context of

107
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dynamic prediction.

5.1 Introduction

Nowadays there is great interest in accurate risk assessment for prevention

and treatment of disease. Physicians use risk scores to reach appropriate

decisions, such as prescribing treatment, or extra medical tests or suggest-

ing alternative therapies. Patients who are informed about their health risk

often decide to adjust their lifestyles to mitigate it. Risk scores are typi-

cally based on several factors that describe the patients’ physical condition,

such as age, BMI, smoking, genetic predisposition, and the results of medical

tests. In this work we focus on the use of the results of such tests and more

specifically on biomarkers. The majority of prognostic models in the medical

literature utilize only a small fraction of the available biomarker information.

In particular, even though biomarkers are measured repeatedly over time,

risk scores are typically based on the last available biomarker measurement.

It is evident that such an approach discards valuable information because it

does not take into account that the rate of change in the biomarker levels

is not only different from patient to patient but also dynamically changes

over time for the same patient. Hence, it is medically relevant to investigate

whether repeated measurements of a biomarker can provide a better under-

standing of disease progression and a better prediction of the risk for the

event of interest than a single biomarker measurement.

In line with the previous arguments, the motivation for this research

This chapter has been submitted for publication as “Dynamic Predictions with Time-
Dependent Covariates in Survival Analysis using joint modeling and Landmarking” in
Biometrical Journal [46].
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comes from a study conducted by the Department of Cardio-Thoracic Surgery

of the Erasmus Medical Center in the Netherlands. This study includes 285

patients who received a human tissue valve in the aortic position in the hos-

pital from 1987 until 2008 [44]. Aortic allograft implantation has been widely

used for a variety of aortic valve or aortic root diseases. Major advantages as-

cribed to allografts are the excellent hemodynamic characteristics as a valve

substitute; the low rate of thrombo-embolic complications, and, therefore,

absence of the need for anticoagulant treatment; and the resistance to endo-

carditis. A major disadvantage of using human tissue valves, however is the

susceptibility to degeneration and the concomitant need for re-interventions.

The durability of a cryopreserved aortic allograft is age-dependent, leading

to a high lifetime risk of re-operation, especially for young patients. Re-

operations on the aortic root are complex, with substantial operative risks,

and mortality rates in the range 4–12%. It is therefore of great interest for

cardiologists and cardio-thoracic surgeons to have at their disposal an ac-

curate prognostic tool that will inform them about the future prospect of a

patient with a human tissue valve in order to optimize medical care, carefully

plan re-operation and minimize valve-relate morbidity and mortality.

From the statistical analysis viewpoint the challenge is to utilize a tech-

nique capable of updating estimates of survival probabilities for a new pa-

tient as additional longitudinal information is recorded. An early approach

in solving this problem has been landmarking [93–95]. The basic idea be-

hind landmarking is to obtain survival probabilities from a Cox model fitted

to the patients from the original dataset who are still at risk at the time

point of interest (e.g., the last time point we know that the new patient was

still alive). A relatively newer method for producing dynamic predictions
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of survival probabilities is based on the class of joint models for longitudi-

nal and time-to-event data [41, 85, 86, 96, 97]. In these models we have a

complete specification of the joint distribution of the longitudinal response

and the event times based on which the predictions in question can be de-

rived. The main aim of this paper is to further study and contrast these

two approaches. In particular, we show how survival probabilities are ob-

tained under each method and what the differences are in the underlying

assumptions. In addition, we focus on the functional relationship between

the two processes and how this may affect predictions. We surpass the stan-

dard formulation, which only includes the current value of the marker, and

we postulate functional forms that allow the rate of increase/decrease of the

longitudinal outcome or a suitable summary of the whole longitudinal trajec-

tory to determine the risk for an event. To assess the quality of the derived

predictions from the two approaches we present different measures of dis-

crimination and calibration, suitably adjusted to the context of longitudinal

biomarkers.

The rest of the paper is organized as follows. Section 5.2 describes for-

mally the context of dynamic predictions and presents the landmarking and

joint modeling approaches. Section 5.3 shows different options for the func-

tional form of the association structure between the longitudinal and event

time processes. Section 5.4 presents measures of discrimination and cali-

bration adapted to the dynamic predictions setting. Section 5.5 illustrates

the use of joint modeling and landmarking in the Aortic Valve dataset and

Section 5.6 refers to the results of a simulation study. Finally, Section 5.7

concludes the paper.
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5.2 Dynamic Individualized Predictions

Following the discussion in Section 5.1 and the motivation from the Aortic

Valve dataset, we present here the two frameworks for deriving dynamic in-

dividualized predictions. Let Dn = {Ti, δi, yi; i = 1, . . . , n} denote a sample

from the target population, where T ∗
i denotes the true event time for the

i-th subject (i = 1, . . . , n), Ci the censoring time, Ti = min(T ∗
i , Ci) the cor-

responding observed event time, and δi = I(T ∗
i ≤ Ci) the event indicator,

with I(·) being the indicator function that takes the value 1 when T ∗
i ≤ Ci,

and 0 otherwise. In addition, we let yi denote the ni × 1 longitudinal re-

sponse vector for the i-th subject, with element yil denoting the value of the

longitudinal outcome taken at time point til, l = 1, . . . , ni.

We are interested in deriving predictions for a new subject j from the

same population that has provided a set of longitudinal measurements Yj(t) =

{yj(tjl); 0 ≤ tjl ≤ t, l = 1, . . . , nj}, and has a vector of baseline covariates

wj . The fact that biomarker measurements have been recorded up to t,

implies survival of this subject up to this time point, meaning that it is

more relevant to focus on the conditional subject-specific predictions, given

survival up to t. In particular, for any time u > t we are interested in the

probability that this new subject j will survive at least up to u, i.e.,

πj(u | t) = Pr(T ∗
j ≥ u | T ∗

j > t, Yj(t), wj , Dn).

The time-dynamic nature of πj(u | t) is evident because when new informa-

tion is recorded for patient j at time t′ > t, we can update these predictions

to obtain πj(u | t′), and therefore proceed in a time-dynamic manner.
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5.2.1 Landmarking

The landmarking approach provides an estimate of πj(u | t) by selecting the

subjects at risk at t from the original dataset Dn, and using these to derive

predictions. More formally, let R(t) = {i : Ti > t} denote the adjusted risk

set, including all subjects who were not censored or dead by the landmark

time t. Then a Cox model is fitted to these subjects by resetting time with

zero being the landmark time, i.e.,

hi(u − t) = lim
∆t→0

1
∆t

Pr
{

u − t ≤ T ∗
i < u − t + ∆t | T ∗

i > u − t, Yi(t)
}

= h0(u − t) exp
{

γ⊤wi + αỹi(t)
}

, u > t,

where the baseline hazard function h0(·) is assumed completely unspecified,

wi denotes a vector of baseline covariates, and the last available longitudinal

response ỹi(t) also enters into the model as an ordinary baseline covariate.

Having fitted this Cox model, an estimate of πj(u | t) is simply obtained by

means of the Breslow estimator:

π̂LM
j (u | t) = exp

[
−Ĥ0(u) exp{γ̂⊤wj + α̂ỹj(t)}

]
, (5.1)

where

Ĥ0(u) =
∑

i∈R(t)

I(Ti ≤ u)δi∑
ℓ∈R(u) exp{γ̂⊤wℓ + α̂ỹℓ(t)}

.

[95] and [94] discuss several extensions of this approach that have greater

flexibility by allowing the regression coefficient α to depend on time, i.e.,

hi(u − t) = h0(u − t) exp
{

γ⊤wi + α(u − t)ỹi(t)
}

,
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and also, possibly, a baseline hazard that is not only a function of the time

since the last measurement u − t, but also a function of the measurement

time t, relaxing thus the proportional hazards assumption. An advantage of

landmarking is that it can be very easily applied in practice, because it only

requires fitting a simple Cox model each time a new measurement has been

recorded for the subject for whom predictions are of interest.

5.2.2 Joint modeling

Contrary to the landmark approach, in the framework of joint models for

longitudinal and time-to-event data we have a complete specification of the

joint distribution of the two outcomes [2, 3, 41, 48, 90]. For the longitudi-

nal biomarker measurements mixed-effects models are typically employed to

describe the subject-specific longitudinal trajectories. For simplicity of expo-

sition and because the marker that we are going to use for the Aortic Valve

dataset, namely the aortic gradient, is a continuous one, we focus here on

linear mixed-effects models,

yi(t) = mi(t) + εi(t) = x⊤
i (t)β + z⊤

i (t)bi + εi(t),

bi ∼ N (0, D), εi(t) ∼ N (0, σ2),
(5.2)

where yi(t) denotes the observed value of the longitudinal outcome at any

particular time point t, xi(t) and zi(t) denote the time-dependent design

vectors for the fixed-effects β and for the random effects bi, respectively,

and εi(t) the corresponding error terms that are assumed independent of the

random effects, and cov{εi(t), εi(t′)} = 0 for t′ ̸= t. For the survival process,

we assume that the risk for an event depends on the ‘true’ and unobserved
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value of the marker at time t (i.e., excluding the measurement error), denoted

by mi(t) in (5.2). More specifically, we have

hi(t | Mi(t), wi) = lim
∆t→0

1
∆t

Pr{t ≤ T ∗
i < t + ∆t | T ∗

i ≥ t, Mi(t), wi}

= h0(t) exp
{

γ⊤wi + αmi(t)
}

, t > 0, (5.3)

where Mi(t) = {mi(s), 0 ≤ s < t} denotes the history of the true unobserved

longitudinal process up to t, h0(·) denotes the baseline hazard function, and,

as before, wi is a vector of baseline covariates with corresponding regres-

sion coefficients γ. Parameter α quantifies the association between the true

value of the marker at t and the hazard for an event at the same time point.

Estimation of joint model’s parameters can be based either on maximum

likelihood or a Bayesian approach using Markov chain Monte Carlo algo-

rithms. The likelihood of the model is derived under the assumptions that

given the random effects, both the longitudinal and event time process are

assumed independent, and the longitudinal responses of each subject are

assumed independent. Formally we have,

p(yi, Ti, δi | bi, θ) = p(yi | bi, θ) p(Ti, δi | bi, θ), (5.4)

p(yi | bi, θ) =
∏

l

p(yil | bi, θ), (5.5)

where θ⊤ = (θ⊤
t , θ⊤

y , θ⊤
b ) denotes the full parameter vector, with θt denot-

ing the parameters for the event time outcome, θy the parameters for the

longitudinal outcomes, and θb the unique parameters of the random-effects

covariance matrix, and p(·) denotes an appropriate probability density func-

tion. More details regarding the estimation and properties of joint models
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can be found in [41] and [89].

Under this framework, estimation of πj(u | t) can be based on (asymp-

totic) Bayesian arguments and the corresponding posterior predictive distri-

bution:

πj(u | t) =
∫

Pr(T ∗
j ≥ u | T ∗

j > t, Yj(t), θ) p(θ | Dn) dθ.

The calculation of the first part of each integrand takes full advantage of

the conditional independence assumptions (5.4) and (5.5). In particular, we

observe that the first term of the integrand of πj(u | t) can be rewritten by

noting that:

Pr(T ∗
j ≥ u | T ∗

j > t, Yj(t), θ)

=
∫

Pr(T ∗
j ≥ u | T ∗

j > t, bj , θ) p(bj | T ∗
j > t, Yj(t), θ) dbj

=
∫

Sj

{
u | Mj(u, bj), θ

}
Sj

{
t | Mj(t, bj), θ

} p(bj | T ∗
j > t, Yj(t), θ) dbj ,

where

Sj

{
t | Mj(t, bj), θ

}
= exp

{∫ t

0
h0(s) exp{γ⊤wi + αmi(s)}

}
ds,

denotes the subject-specific survival function.

Combining these equations with the maximum likelihood estimates or

with the MCMC sample from the posterior distribution of the parameters

for the original data Dn, we can devise a simple simulation scheme to obtain

a Monte Carlo estimate of πj(u | t). More specifically, this is comprised of

the following steps:

Step 1. Take K samples of {θ(k), k = 1, . . . , K} from either the MCMC sample
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of p(θ | Dn) or the asymptotic normal posterior distribution N (θ̂, Hn),

where θ̂ denotes the maximum likelihood estimates and Hn the ob-

served information matrix

Hn =
{

−
n∑

i=1

∂2 log p(yi, Ti, δi, θ)
∂θ⊤∂θ

∣∣∣
θ=θ̂

}−1

.

Step 2. Draw K realizations {b
(k)
j , k = 1, . . . , K} for the random effects of the

new subject j from the posterior distribution of the random effects

p
(
bj | T ∗

j > t, Yj(t), θ(k)) ∝
{nj(t)∏

l=1

p
(
yjl | bj , θ(k))}

Sj

{
t | Mj(t, bj), θ(k)}

×p
(
bj , θ(k)),

where nj(t) denotes the number of available measurements for subject

j by time t.

Step 3. Based on these realizations an estimate of πj(u | t) is derived as

π̂JM
j (u | t) = 1

K

K∑
k=1

Sj

{
u | Mj(u, b

(k)
j ), θ(k)}

Sj

{
t | Mj(t, b

(k)
j ), θ(k)} . (5.6)

More details can be found in [85] and [41,86].

5.2.3 Heuristic comparison between landmarking and

joint modeling

The previous two sections illustrated that both landmarking and joint mod-

eling can be utilized to derive dynamically updated estimates of conditional
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survival probabilities πj(u | t). The landmark approach can be more eas-

ily implemented in practice because it only requires fitting a standard Cox

model, whereas joint models require specialized software [40,41]. In addition,

joint models seem to make more modeling assumptions than the landmark

approach, which poses a concern regarding how a misspecification of these

assumptions may affect predictions. On the other hand, the landmark ap-

proach uses less information than joint modeling (i.e., only the last observed

longitudinal response), and hence is less optimal. The following points pro-

vide a more detailed exposition of the underlying differences between the

two approaches.

• Extrapolation: The main differences in how landmarking and joint

modeling tackle the problem of prediction can best be explained by Fig-

ure 5.1. This shows the longitudinal responses of a hypothetical subject

who was alive up to year five and for whom we would like to obtain

a predicted survival function. To produce estimates of the conditional

survival probabilities both landmarking and joint modeling require a

value for the longitudinal response at t = 5 (vertical dotted line). Since

this subject provided her last longitudinal measurement at year three,

some sort of extrapolation is taking place. In particular, landmarking

is based on a ‘last value carried forward’ approach and uses as the value

of the longitudinal response at year five the last available measurement

of the subject at year three (horizontal dashed line). Even though this

approach is conceptually simple and easy to perform in practice, un-

fortunately, it may lead to biased and misleading inference on the Cox

model parameters [98]. Joint modeling on the other hand uses the

subject-specific fitted value of the longitudinal profile from the linear
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mixed model extrapolated at year 5, i.e., mj(5) = x⊤
j (5)β + z⊤

j (5)bj

(solid line). This approach uses all available information, because the

estimate of mj(5) is based on both all past values of this subject and

on the responses of other subjects. To explain how the borrowing of

information between subjects is taking place, assume, hypothetically,

that there was another patient, who during the first three years had

exactly the same longitudinal measurements as the patient depicted in

Figure 5.1, but also she had extra measurements up to year five. The

joint model would make use of this patient and say that the profile

of the patient in Figure 5.1 would be similar to the one of the patient

with the extra measurements. From a biological point of view the joint

modeling approach seems more logical than landmarking because we

indeed expect the biomarker levels of a patient to continuously change

over time rather than to remain constant between visits.

Note that in general even if we had observed the longitudinal response

at t = 5, i.e., yj(5) this will not be equal to mj(5). The joint model as-

sumes that the realizations of the longitudinal marker are the output of

a stochastic process generated by the subject, and it is the underlying

signal in the process, represented by mj(t), that is associated with the

hazard for an event. The observed data yj(t) are a contaminated with

measurement error version of the underlying signal mj(t). This mea-

surement error most often stems from biological variation, but some

times may also be attributed to the medical test/examination used to

measure the marker.
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Figure 5.1: Graphical comparison on how landmarking and joint modeling use the
available longitudinal measurements to provide an estimate of the longitudinal
outcome at the last time point the patients was still alive. The left side of
the plot shows the observed longitudinal responses, and the fitted longitudinal
profile from the joint model. The right side shows the corresponding survival
probability.

• Assumptions related to the longitudinal process: The land-

mark approach assumes that the visiting process, which is the process,

stochastic or deterministic, that generates the visit times at which sub-

jects provide measurements is independent of the longitudinal marker

process and the survival time T ∗
j . The joint modeling approach also

assumes that a visit scheduled at time t is independent of a future event

occurring at T ∗
j > t and of future longitudinal responses {yj(s), t ≤ s ≤

T ∗
j }, but it does allow visit times to depend on the observed longitudi-

nal responses Yj(t). This is a more realistic assumption because what

we expect to happen in practice is that physicians will ask a patient

to come back more often if they observe a worsening of her condition
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based on her observed responses. In addition, subjects may have miss-

ing marker measurements during follow-up. The landmark approach

assumes that any such missingness is completely at random [99]. On

the other hand, due to the fact that joint modeling is based on a com-

plete specification of the joint likelihood function of the longitudinal

and event time processes, it allows incomplete longitudinal data to

be missing at random. Hence, joint modeling is capable of providing

valid inferences under less stringent assumptions than landmarking.

Though, it should be mentioned that these advantageous features re-

quire the joint model to be roughly correctly specified.

• Assumptions related to the event process: Similarly to the as-

sumptions for the longitudinal process, landmarking makes more strin-

gent assumptions for the censoring process. In particular, under the

landmark approach censoring is assumed independent of past longi-

tudinal responses {yj(s); 0 ≤ s < t}, whereas under joint modeling

and again because we use a complete specification of the joint like-

lihood function, censoring is allowed to depend in a general way on

{yj(s); 0 ≤ s < t}.

5.3 Functional form

The assessment of the predictive value of baseline covariates is to a de-

gree simple, in the sense that these covariates are typically included in a

prognostic model as is or under a suitable transformation (e.g., log-scale,

polynomials, splines, etc.). However, in our setting, where we have multi-
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ple longitudinal measurements available per subject there could be different

features of the longitudinal process that are most predictive for the event

of interest. For example, in ordinary proportional hazards models, it has

been long recognized that the functional form of time-varying covariates in-

fluences the derived inferences; see, for instance, [100] and references therein.

In the joint modeling framework however, where the longitudinal outcome

plays the role of a time-dependent covariate for the survival process, this

topic has received less attention. The two main functional forms that have

been primarily used so far in joint models include in the linear predictor of

the relative risk model (5.3) either the subject-specific means mi(t) from the

longitudinal submodel or just the random effects bi [28,48]. However, as ar-

gued above, there could be other characteristics of the patients’ longitudinal

profiles that are more predictive for the risk of an event, such as the rate

of increase/decrease of the biomarker’s levels or a suitable summary of the

whole longitudinal trajectory. Here we present a few examples of alternative

formulations for the association structure between the longitudinal outcome

and the risk for an event:

hi(t) = h0(t) exp
{

γ⊤wi + α1mi(t) + α2m′
i(t)

}
, m′

i(t) = dmi(t)
dt

, (5.7)

hi(t) = h0(t) exp
{

γ⊤wi + α

∫ t

0
mi(s) ds

}
, (5.8)

hi(t) = h0(t) exp
{

γ⊤wi + α

∫ t

0
ϱ(t − s)mi(s) ds

}
, (5.9)

hi(t) = h0(t) exp(γ⊤wi + α⊤bi). (5.10)

It is evident that these parameterizations have different sets of association

parameters α, and in addition that the interpretation of these parameters is

different for each formulation. In particular, parameterization (5.7) postu-

lates that the risk for an event at a particular time point t depends not only
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on the level of the marker at this time point but also on its rate of change,

captured by the slope term m′
i(t). This could be of importance when two

patients at a specific time point have equal marker levels, but one patient

having an increasing trajectory and the other a decreasing one. Parameteri-

zation (5.8) posits that the risk for an event at time t is associated with the

area under the longitudinal trajectory up to this point. This can be consid-

ered as a summary of the whole marker history up to t and contrary to the

previous formulations it allows the risk to the depend on the whole history

Mi(t) = {mi(s), 0 ≤ s < t} and not only on features of the marker at t.

Parameterization (5.9) extends (5.8) by assigning to the past values of the

longitudinal trajectory different weights, using a function ϱ(·). For instance,

setting ϱ(t − s) = ϕ(t − s)/{Φ(t) − 0.5}, where 0 < s < t, and ϕ(·) and Φ(·)

denote the probability density and cumulative distribution functions of the

standard normal distribution, respectively, we assume that the risk at t only

depends on the marker levels in the interval (t − 3, t) with values closer to

t having higher weight, because when t − s > 3 then ϱ(t − s) is practically

zero. Finally, parameterization (5.10) is time-independent and assumes that

the hazard for an event is related to the random effects from the longitudinal

process. This formulation shares similarities with the time-dependent slopes

parameterization (5.7) when a simple random-intercepts and random-slopes

structure is assumed for the longitudinal submodel.

Under the landmarking approach, and in order to improve predictive per-

formance, we could also make better use of the observed longitudinal history

than just using the last available measurement. Mimicking the formulations

presented above for joint modeling, we can define Cox models fitted to the

patients at risk at the landmark time t, which include ỹ′
i(t) that denotes the
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slope calculated from the last two available measurements of each subject,

and
∑

0≤s≤t yi(s)∆s that denotes the area under the step function defined

from the observed longitudinal measurements up to t:

hi(u − t) = h0(u − t) exp
{

γ⊤wi + α1ỹi(t) + α2ỹ′
i(t)

}
,

hi(u − t) = h0(u − t) exp
{

γ⊤wi + α
t∑

s=0
yi(s)∆s

}
,

hi(u − t) = h0(u − t) exp
{

γ⊤wi + α

t∑
s=0

ϱ(t − s)yi(s)∆s
}

,

where, as before, ϱ(t − s) is a potential weight function. Note that we do

not have an analogous functional form to (5.10) under landmarking.

5.4 Measuring predictive performance

The assessment of the predictive performance of time-to-event models has

received a lot of attention in the statistical literature. In general, the de-

veloped methodology has focused on calibration, i.e., how well the model

predicts the observed data [101,102] or discrimination, i.e., how well can the

model discriminate between patients that had the event from patients that

did not [103,104]. In the following we present discrimination and calibration

measures suitably adapted to the dynamic prediction setting. It should be

noted that these measures require in their essence an estimate of πj(u | t),

and therefore they are applicable under both landmarking and joint mod-

eling. In the following we will use the term π̂j(u | t) to generically denote

either (5.1) or (5.6).
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5.4.1 Discrimination

To take into account the dynamic nature of the longitudinal marker in dis-

criminating between subjects, we focus on a time interval of medical relevance

within which the occurrence of events is of interest. In this setting, a useful

property of the model would be to successfully discriminate between patients

who are going to experience the event within this time frame from patients

who will not. To put this formally, as before, we assume that we have col-

lected longitudinal measurements Yj(t) = {yj(tjl); 0 ≤ tjl ≤ t, l = 1, . . . , nj}

up to time point t for subject j. We are interested in events occurring in

the medically-relevant time frame (t, t + ∆t] within which the physician can

take an action to improve the survival chance of the patient. Under the

assumed model and the methodology presented in Section 5.2, we can define

a prediction rule using πj(t + ∆t | t) that takes into account the available

longitudinal measurements Yj(t). In particular, for any value c in [0, 1] we

can term subject j as a case if πj(t+∆t | t) ≤ c (i.e., occurrence of the event)

and analogously as a control if πj(t + ∆t | t) > c. Thus, in this context, we

define sensitivity and specificity as

Pr
{

πj(t + ∆t | t) ≤ c | T ∗
j ∈ (t, t + ∆t]

}
,

and

Pr
{

πj(t + ∆t | t) > c | T ∗
j > t + ∆t

}
,

respectively. For a randomly chosen pair of subjects {i, j}, in which both

subjects have provided measurements up to time t, the discriminative capa-

bility of the assumed model can be assessed by the area under the receiver
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operating characteristic curve (AUC), which is obtained for varying c and

equals,

AUC(t, ∆t) = Pr
[
πi(t+∆t | t) < πj(t+∆t | t) | {T ∗

i ∈ (t, t+∆t]}∩{T ∗
j > t+∆t}

]
,

that is, if subject i experiences the event within the relevant time frame

whereas subject j does not, then we would expect the assumed model to

assign higher probability of surviving longer than t + ∆t for the subject who

did not experience the event. To summarize the discriminative power of

the assumed model over the whole follow-up period, we need to take into

account that the number of subjects contributing to the comparison of the

fitted πi(t+∆t | t) with the observed data is not the same for all time points

t. Following an approach similar to [105] and [106], we propose the use of a

weighted average of AUCs

C∆t
dyn =

∫ ∞

0
AUC(t, ∆t) Pr{E(t)} dt

/ ∫ ∞

0
Pr{E(t)} dt, (5.11)

where E(t) =
[
{T ∗

i ∈ (t, t + ∆t]} ∩ {T ∗
j > t + ∆t}

]
, and Pr{E(t)} denotes the

probability that a random pair is comparable at t. We call C∆t
dyn the dynamic

concordance index since it summarizes the concordance probabilities over the

follow-up period. Note also that C∆t
dyn depends on the length ∆t of the time

interval of interest, which implies that different models may exhibit different

discrimination power for different ∆t.

For the estimation of C∆t
dyn we need to take care of two issues, namely,

the calculation of the integrals in the definition of (5.11) and censoring. For

the former we use a 15-point Gauss-Kronrod quadrature rule [107]. To take

into account the fact that the number of subjects decreases over time due
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to the occurrence of events and censoring, for any time point t we define as

comparable pairs the pairs that satisfy the relation

Ωij(t) =
[
{Ti ∈ (t, t + ∆t]} ∩ {δi = 1}

]
∩ {Tj > t + ∆t} or[

{Ti ∈ (t, t + ∆t]} ∩ {δi = 1}
]

∩
[
{Tj = t + ∆t} ∩ {δj = 0}

]
,

where i, j = 1, . . . , n with i ̸= j. For two comparable subjects i and j,

we can estimate and compare their survival probabilities πi(t + ∆t | t) and

πj(t + ∆t | t), based on the methodology presented in Section 5.2. This

leads to a natural estimator for AUC(t, ∆t) as the proportion of concordant

subjects out of the set of comparable subjects for time t:

AÛC(t, ∆t) =
∑n

i=1
∑n

j=1;j ̸=i I{π̂i(t + ∆t | t) < π̂j(t + ∆t | t)} × I{Ωij(t)}∑n
i=1

∑n
j=1;j ̸=i I{Ωij(t)}

,

where I(·) denotes the indicator function. Having estimated AUC(t, ∆t), the

next step in estimating C∆t
dyn is to obtain estimates for the weights Pr{E(t)}.

We observe that these can be rewritten as

Pr{E(t)} = Pr
[
{T ∗

i ∈ (t, t + ∆t]} ∩ {T ∗
j > t + ∆t}

]
= Pr(T ∗

i ∈ (t, t + ∆t]) × Pr(T ∗
j > t + ∆t)

= {S(t) − S(t + ∆t)}S(t + ∆t),

where the simplification in the second line comes from the independence of

subjects i and j, and S(·) here denotes the marginal survival function.

In practice the calculation of C∆t
dyn is restricted into a follow-up interval

[0, tmax] where we have information. Let t1, . . . , t15 denote the re-scaled ab-



5.4 Measuring predictive performance 127

scissas of the Gauss-Kronrod rule in the interval [0, tmax] with corresponding

weights ϖ1, . . . , ϖ15. We combine the estimates AÛC(tk, ∆t), k = 1, . . . , 15

with the estimates of the weights Pr{E(t)} to obtain

Ĉ
∆t

dyn =
∑15

k=1 ϖkAÛC(tk, ∆t) × P̂r{E(tk)}∑15
k=1 ϖkP̂r{E(tk)}

,

where P̂r{E(tk)} = {Ŝ(tk) − Ŝ(tk + ∆t)}Ŝ(tk + ∆t), with Ŝ(·) denoting the

Kaplan-Meier estimate of the marginal survival function S(·).

5.4.2 Calibration

The assessment of the accuracy of predictions of survival models is typically

based on the expected error of predicting future events. In our setting, and

again taking into account the dynamic nature of the longitudinal outcome, it

is of interest to predict the occurrence of events at u > t given the information

we have recorded up to time t. This gives rise to expected prediction error:

PE(u | t) = E
[
L{Ni(u) − πi(u | t)}

]
,

where Ni(t) = I(T ∗
i > t) is the event status at time t, L(·) denotes a loss

function, such as the absolute or square loss, and the expectation is taken

with respect to the distribution of the event times. An estimate of PE(u | t)

that accounts for censoring has been proposed by [96]:

P̂E(u | t) = {n(t)}−1
∑

i:Ti≥t

I(Ti ≥ u)L{1−π̂i(u | t)}+δiI(Ti < u)L{0−π̂i(u | t)}

+(1−δi)I(Ti < u)
[
π̂i(u | Ti)L{1−π̂i(u | t)}+{1−π̂i(u | Ti)}L{0−π̂i(u | t)}

]
,
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where n(t) denotes the number of subjects at risk at time t. The first

two terms in the sum correspond to patients who were alive after time u

and dead before u, respectively; the third term corresponds to patients who

were censored in the interval [t, u]. Using the longitudinal information up

to time t, PE(u | t) measures the predictive accuracy at the specific time

point u. Alternatively, we could summarize the error of prediction in a

specific interval of interest, say [t, u], by calculating a weighted average of

{PE(s | t), t < s < u} that corrects for censoring, similarly to C∆t
dyn. An

estimator of this type for the integrated prediction error has been suggested

by [101], which adapted to our time-dynamic setting takes the form

IP̂E(u | t) =
∑

i:t≤Ti≤u δi

{
ŜC(t)/ŜC(Ti)

}
P̂E(u | t)∑

i:t≤Ti≤u δi

{
ŜC(t)/ŜC(Ti)

} ,

where ŜC(·) denotes the Kaplan-Meier estimator of the censoring time dis-

tribution.

Both IP̂E(u | t) and P̂E(u | t) can be used to provide a measure of

explained variation between nested models. Assuming model M1 is nested

in model M2, we can compute how much the extra structure in M2 improves

accuracy by

R2
P E(u | t; M1, M2) = 1 − P̂EM2(u | t)

/
P̂EM1(u | t)

or

R2
IP E(u | t; M1, M2) = 1 − IP̂EM2(u | t)

/
IP̂EM1(u | t).
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5.5 Analysis of the Aortic Valve dataset

We return to the Aortic Valve dataset introduced in Section 5.1. Our aim

is to use the existing data and provide accurate predictions of re-operation-

free survival for future patients from the same population, utilizing their

baseline information, namely age, gender, BMI and the type of operation

they underwent, and their recorded aortic gradient levels. In our study, a

total of 77 (27%) patients received a sub-coronary implantation (SI) and the

remaining 208 patients a root replacement (RR). These patients were fol-

lowed prospectively over time with annual telephone interviews and biennial

standardized echocardiographic assessment of valve function until July 8,

2010. Echo examinations were scheduled at 6 months and 1 year postopera-

tively, and biennially thereafter, and at each examination, echocardiographic

measurements of aortic gradient (mmHg) were taken. By the end of follow-

up, 1262 aortic gradient measurements were recorded with an average of

4.3 measurements per patient (s.d. 2.4 measurements), 59 (20.7%) patients

had died, and 73 (25.6%) patients required a re-operation on the allograft.

The composite event, re-operation or death, was observed for 125 (43.9%)

patients, and the corresponding Kaplan-Meier estimator for the two inter-

vention groups is shown in Figure 5.2. We can observe minimal differences in

the re-operation-free survival rates between sub-coronary implantation and

root replacement, with only a slight advantage of sub-coronary implantation

towards the end of the follow-up. For the longitudinal process and because

aortic gradient exhibits right skewness, we will proceed in our analysis using

the square root transform of this outcome. Figure 5.3 depicts the subject-

specific longitudinal profiles of the square root aortic gradient for the two
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Figure 5.2: Kaplan-Meier estimates of the survival functions for re-operation-
free survival for the sub-coronary implantation (SI) and root replacement (RR)
groups.

intervention groups. We observe considerable variability in the shapes of

these trajectories, but there are no systematic differences apparent between

the two groups.

We start by defining a set of joint models based on which predictions will

be calculated. For the longitudinal process we allow a flexible specification

of the subject-specific square root aortic gradient trajectories using natural

cubic splines of time. More specifically, the linear mixed model takes the
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Figure 5.3: Subject-specific profiles for the square root aortic gradient separately
for the sub-coronary implantation (SI) and root replacement (RR) groups.

form

yi(t) = β1SIi + β2RRi + β3{B1(t, λ) × SIi} + β4{B1(t, λ) × RRi}

+ β5{B2(t, λ) × SIi} + β6{B2(t, λ) × RRi}

+ β7{B3(t, λ) × SIi} + β8{B3(t, λ) × RRi}

+ bi0 + bi1B1(t, λ) + bi2B2(t, λ) + bi3B3(t, λ) + εi(t),

where Bn(t, λ) denotes the B-spline basis for a natural cubic spline with

boundary knots at baseline and 19 years and internal knots at 2.1 and 5.5

years (i.e., the 33.3% and 66.6% percentiles of the observed follow-up times),

SI and RR are the dummy variables for the sub-coronary implantation and

root replacement groups, respectively, εi(t) ∼ N (0, σ2) and bi ∼ N (0, D).
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For the survival process we consider four relative risk models, each positing

a different association structure between the two processes, namely:

M1 : hi(t) = h0(t) exp
{

γ1RRi + γ2Agei + γ3Femalei + γ4BMIi + α1mi(t)
}

,

M2 : hi(t) = h0(t) exp
{

γ1RRi + γ2Agei + γ3Femalei + γ4BMIi + α1mi(t) + α2m′
i(t)

}
,

M3 : hi(t) = h0(t) exp
{

γ1RRi + γ2Agei + γ3Femalei + γ4BMIi + α1

∫ t

0
mi(s)ds

}
,

M4 : hi(t) = h0(t) exp
(
γ1RRi+γ2Agei+γ3Femalei+γ4BMIi+α1bi0+α2bi1+α3bi2+α4bi3

)
,

where the baseline hazard is approximated with B-splines, i.e.,

log h0(t) = γh0,0 +
Q∑

q=1
γh0,qBq(t, v),

with five internal knots placed at the corresponding percentiles of the ob-

served event times, and Female denotes the dummy variable for females.

The estimation of these models was based on a Bayesian approach and an

MCMC algorithm with a single chain of 115,000 iterations from which we

discarded the first 15,000 samples as burn-in. For all parameters we took

standard prior distributions [89, 92]. In particular, for the vector of fixed

effects of the longitudinal submodel β, the regression parameters of the sur-

vival model γ, the vector of spline coefficients for the baseline hazard γh0
,

and for the association parameter α we used independent univariate diffuse

normal priors. For the variance of the error terms σ2 we take an inverse-

Gamma prior, while for covariance matrices we assumed an inverse Wishart

prior. All computations have been performed in R (version 3.0.1) using

package JMbayes [108] and WinBUGS (version 1.4.3) . Trace plots did not
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show any alarming indications of convergence failure while auto-correlation

plots showed relatively good mixing of the chains. Tables 5.1 and 5.2 show

estimates and the corresponding 95% credible intervals for the parameters

in the longitudinal and survival submodels , respectively. We observe that

the parameter estimates in the relative risk models show greater variability

between the posited association structures (in particular between the time-

dependent (M1, M2, and M3) and the time-independent parameterizations

(M4)) than the parameters in the linear mixed models. However, we should

note that the interpretation of the regression coefficients γ is not the same

in the four survival submodels because we condition on different components

of the longitudinal process.
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To assess the predictive ability of the four joint models and compare them

with the landmark approach we consider the time interval [t = 7.5, u = 9.5]

years. The reason for choosing this interval is twofold. First, by time t = 7.5

years 75% of aortic gradient measurements have been recorded, and hence

we have sufficient longitudinal information, and second, a two-year interval

is considered a medically relevant time frame within which we would like

to obtain accurate predictions of prognosis. For the 207 patients still at

risk at 7.5 years we fitted three Cox models with corresponding association

structures to the joint models defined above (except from the random effects

association structure), i.e.,

M5 : hi(u−7.5) = h0(u−7.5) exp
{

γ1RRi+γ2Agei+γ3Femalei+γ4BMIi+α1ỹi(7.5)
}

,

M6 : hi(u − 7.5) = h0(u − 7.5) exp
{

γ1RRi + γ2Agei + γ3Femalei + γ4BMIi

+α1ỹi(7.5) + α2ỹ′
i(7.5)

}
,

M7 : hi(u − 7.5) = h0(u − 7.5) exp
{

γ1RRi + γ2Agei + γ3Femalei + γ4BMIi

+α1

7.5∑
s=0

yi(s)∆s
}

,

where u > 7.5, variable ỹi(7.5) denotes the last available square root aor-

tic gradient value of each patient before year 7.5, ỹ′
i(7.5) denotes the slope

defined from the last two available measurements, and
∑

0≤s≤7.5 yi(s)∆s

denotes the area under the step function defined from the observed square

root aortic gradient measurements up to 7.5 years. The parameter estimates

and confidence intervals of these Cox models are presented in Table 5.3.
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We evaluate both discrimination and calibration using the predictive accu-

Table 5.3: Estimated coefficients and 95% confidence intervals for the parame-
ters in the Cox models fitted to the patients at risk at t = 7.5 years.

Value (M5) Value+Slope (M6) Area (M7)

Est. 95% CI Est. 95% CI Est. 95% CI

RR 0.42 (−0.087; 0.930) 0.42 (−0.085; 0.927) 0.39 (−0.136; 0.907)
Age −0.01 (−0.025; 0.012) −0.01 (−0.024; 0.014) −0.01 (−0.026; 0.011)
Female −0.17 (−0.678; 0.347) −0.16 (−0.672; 0.352) −0.15 (−0.669; 0.363)
BMI 0.02 (−0.046; 0.093) 0.03 (−0.042; 0.097) 0.03 (−0.044; 0.094)
α1 0.02 (−0.187; 0.224) −0.01 (−0.221; 0.199) −0.01 (−0.047; 0.031)
α2 0.25 (−0.164; 0.669)

racy measures presented in Section 5.4, namely P̂E(9.5|7.5), IP̂E(9.5|7.5),

AÛC(9.5|7.5) and C∆t=2
dyn . For the first two the absolute loss function was

used, and the calculation of Ĉ
∆t=2
dyn was based on the interval [0, 15] years,

with upper limit marking the 60% percentile of the event times distribution.

The estimates of these measures are presented in Table 5.4. With respect

to accuracy we observe that joint model M4 with the shared random-effects

parameterization has the smallest prediction error, followed by the other

three joint models and the three Cox models using the landmark approach.

This is in terms of both accuracy of prediction at year 9.5 and the weighted

average of prediction errors in the interval [7.5, 9.5]. With respect to dis-

criminative capability we observe that joint models M1 and M2 can best

discriminate between patients followed by the landmark approach and the

other two joint models. The overall winner could be deemed joint model

M4, which has the best accuracy and respectable discriminative capability

compared to the models that offer the best discrimination. A comparison be-

tween the landmark approach and joint modeling in this particular dataset,
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Table 5.4: Predictive performance measures for the Aortic Valve dataset under
the four joint models and the landmark approach based on Cox models with the
analogous functional forms. For P̂E(9.5|7.5) and IP̂E(9.5|7.5) the absolute loss
function was used. Ĉ

∆t=2
dyn has been calculated in the interval [0, 15] years.

P̂E(9.5|7.5) IP̂E(9.5|7.5) AÛC(9.5|7.5) Ĉ
∆t=2
dyn

M1: JM value 0.1732 0.0904 0.6106 0.6433
M2: JM value+slope 0.1647 0.0855 0.5958 0.6592
M3: JM area 0.1525 0.0802 0.6090 0.5419
M4: JM shared RE 0.1133 0.0586 0.5755 0.6201

M5 : CoxLM value 0.1888 0.1032 0.5587 0.6338
M6 : CoxLM value+slope 0.1877 0.1025 0.5300 0.6238
M7 : CoxLM area 0.1885 0.1031 0.5739 0.5930

and in particular when we compare the same parameterization (i.e., models

M1 vs. M5, M2 vs. M6 and M3 vs. M7), reveals that the joint models

perform better in terms of both accuracy and discrimination.

5.6 Simulations

5.6.1 Design

We performed a series of simulations to landmarking with joint models in

the context of dynamic predictions. The design of our simulation study is

motivated by the set of joint models fitted to the Aortic Valve dataset in Sec-

tion 5.5. In particular, we assume 300 patients who have been followed-up

for a period of 19 years, and were planned to provide longitudinal measure-

ments at baseline and afterwards at nine random follow-up times. For the

longitudinal process, and similarly to the model fitted in the Aortic Valve
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dataset, we used natural cubic splines of time with two internals knots placed

at 2.1 and 5.5 years, and boundary knots placed at baseline and 19 years,

i.e., the form of the model is as follows

yi(t) = β1Trt0i + β2Trt1i + β3{B1(t, λ) × Trt0i} + β4{B1(t, λ) × Trt1i}

+ β5{B2(t, λ) × Trt0i} + β6{B2(t, λ) × Trt1i}

+ β7{B3(t, λ) × Trt0i} + β8{B3(t, λ) × Trt1i}

+ bi0 + bi1B1(t, λ) + bi2B2(t, λ) + bi3B3(t, λ) + εi(t),

where Bn(t, λ) denotes the B-spline basis for a natural cubic spline with

λ = (0, 2.1, 5.5, 19), Trt0 and Trt1 are the dummy variables for the two

treatment groups, εi(t) ∼ N (0, σ2) and bi ∼ N (0, D) with D taken to be

diagonal.

For the survival process, we have assumed four scenarios, each one corre-

sponding to a different functional form for the association structure between

the two processes. Motivated by the arguments set forth in Section 5.2.3,

we simulated survival data under the joint modeling framework (i.e., not

assuming that the biomarker’s levels are constant between the visit times).

More specifically,

Scenario I: hi(t) = h0(t) exp
{

γ0 + γ1Trt1i + α1mi(t)
}

,

Scenario II: hi(t) = h0(t) exp
{

γ0 + γ1Trt1i + α1mi(t) + α2m′
i(t)

}
,

Scenario III: hi(t) = h0(t) exp
{

γ0 + γ1Trt1i + α1

∫ t

0
mi(s)ds

}
,

Scenario IV: hi(t) = h0(t) exp
(
γ0 + γ1Trt1i + α1bi0 + α2bi1 + α3bi2 + α4bi3

)
,

with h0(t) = σtt
σt−1, i.e., the Weibull baseline hazard. The values for the
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regression coefficients in the longitudinal and survival submodels, the vari-

ance of the error terms of the mixed model, the covariance matrix for the

random effects, and the scale of the Weibull baseline risk function are given

in Appendix D.1, and have been chosen such that the distribution of the

event times and the distribution of the follow-up longitudinal measurements

were comparable across scenarios. Censoring times were simulated from a

uniform distribution in (0, tC) with tC set to result in about 45% censoring

in each scenario. For each scenario we simulated 200 datasets.

5.6.2 Results

Mimicking the real-life use of a prognostic model, and to assess any potential

overfitting issues, the comparison between the landmark and joint modeling

approaches is based on subjects who were not used in fitting the correspond-

ing models. More specifically, under each scenario and for each simulated

dataset, we randomly excluded ten subjects whose event times were cen-

sored. For these subjects we set as landmark time the time point of their

last longitudinal measurement, and produce survival probabilities from that

point onwards to the end of the follow-up. Under the landmark approach

these probabilities are based on the following relative risk models fitted to

the remaining subjects:

LM1 : hi(u − tLM ) = h0(u − tLM ) exp
{

γ0 + γ1Trt1i + α1ỹi(tLM )
}

,

LM2 : hi(u − tLM ) = h0(u − tLM ) exp
{

γ0 + γ1Trt1i + α1ỹi(tLM ) + α2ỹ′
i(tLM )

}
,

LM3 : hi(u − tLM ) = h0(u − 7.5) exp
{

γ0 + γ1Trt1i + α1

tLM∑
s=0

yi(s)∆s
}

,

where tLM denotes the landmark time, and as before, ỹi(tLM ) denotes the

last available measurement of subject i before tLM , ỹ′
i(tLM ) denotes the slope
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defined from the last two available measurements, and
tLM∑
s=0

yi(s)∆s the area

under the step function defined from the observed longitudinal responses

up to tLM . Similarly, we also fitted four joint models to the remaining 290

subjects, with the same longitudinal submodel as the one we simulated from,

and survival submodels:

JM1 : hi(t) = h0(t) exp
{

γ0 + γ1Trt1i + α1mi(t)
}

,

JM2 : hi(t) = h0(t) exp
{

γ0 + γ1Trt1i + α1mi(t) + α2m′
i(t)

}
,

JM3 : hi(t) = h0(t) exp
{

γ0 + γ1Trt1i + α1

∫ t

0
mi(s) ds

}
,

JM4 : hi(t) = h0(t) exp
(
γ0 + γ1Trt1i + α1bi0 + α2bi1 + α3bi2 + α4bi3

)
,

based on which survival probabilities were derived. Due to the fact that

our aim here is to investigate the impact on predictions of the underlying

differences between landmarking and joint modeling, as explained in Sec-

tion 5.2.3, in both approaches the baseline hazard is assumed of the Weibull

form, i.e., h0(t) = σtt
σt−1 with σt denoting the shape parameter and the

intercept term γ0 the log scale parameter.

Based on the seven models, predictions were calculated for each of the ten

subjects we have originally excluded, at ten equidistant time points between

their last available longitudinal measurement and the end of follow-up. To

evaluate the accuracy of these predicted survival probabilities we compared

them with the gold standard survival probabilities, which are calculated as

Sj

{
u | Mj(u, bj), θ

}
/Sj

{
t | Mj(t, bj), θ

}
, using the true parameter values

and the true values of the random effects for the subjects we excluded. Hence,

in each simulated dataset and for each of the ten subjects, we calculated root
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mean squared prediction errors (RMSEs) between the gold standard survival

probabilities and the predictions under the seven models. The RMSEs over

all the subjects from the 200 datasets are shown in Figure 5.4. The results
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Figure 5.4: Simulation results under the four scenarios based on 200 datasets.
Each boxplot shows the distribution of the root mean squared predictions error
of the corresponding model to compute predictions versus the gold standard.

suggest that the joint modeling approach seems to give more accurate pre-

dictions than landmarking. More noticeable are the differences in Scenarios

I, II and IV while in Scenario III both approaches gave similarly accurate

results.

5.7 Discussion

In this work we have contrasted and compared two popular approaches,

namely landmarking and joint modeling, for producing dynamically-updated
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predictions of survival probabilities with time-dependent covariates. Land-

marking can effortlessly be implemented in practice but it makes strong

assumptions regarding the path of the time-dependent covariates, which

may be unrealistic for longitudinal biomarker measurements. On the other

hand, joint modeling allows for greater flexibility in the attributes of time-

dependent covariate process, but requires more modeling assumptions to

achieve this and is generally more computationally intensive. Our simu-

lation study and the analysis of the motivating Aortic Valve dataset have

shown that, in general, there is a gain from considering the joint modeling

approach instead of landmarking.

In our developments we have only focused on a single continuous lon-

gitudinal biomarker. However, often in practice and in order to obtain a

more complete picture of the progression of a patient, several biomarkers are

recorded, which could be of either continuous or categorical nature. In this

more complex setting landmarking is advantageous because it is straightfor-

ward to include extra markers as baseline covariates in the linear predictor

of the Cox model fitted to the patients at risk at the landmark point. On

the contrary, the joint modeling approach requires a model specification for

each marker. Mathematically and under the conditional independence as-

sumptions (5.4) and (5.5) this relatively easily achieved by considering the

framework of generalized linear mixed effects models [109]. From the prac-

tical side, however, the dimensionality of the random effects may increase

considerably, making joint models harder to fit. Previous and recent work

by the first author is focused on resolving this problem by making use of

Laplace approximations and efficient Gaussian quadrature rules [41,47] . In

addition, in our analysis of the Aortic Valve dataset we have considered the
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composite event re-operation or death (whatever comes first), but for the

treating physicians it could be of interest to have risk estimates separately

for the two events. In this case we can extend both landmarking and joint

modeling to the competing risks setting and derive estimates of the corre-

sponding cumulative incidence functions. A general challenge when either or

both of the two extensions (i.e., multiple longitudinal outcomes or multiple

event times) are considered is the number of possible models. In particu-

lar, following the discussion in Section 5.3 and the different possibilities we

have in building the functional relationship between the longitudinal and

time-to-event outcomes, it is evident that when we move to the multivariate

setting, the choice of the appropriate parameterization for each longitudi-

nal outcome and eventually for each competing risk becomes a demanding

model-selection exercise.

Regarding the software implementation of the methodology presented in

the paper, the landmark approach is readily available in all statistical soft-

ware that fit Cox models. The fitting of joint models, the derivation of

dynamic predictions (for the survival and longitudinal outcomes) and the

calculation of the calibration and discrimination measures presented in Sec-

tion 5.4 are implemented in the freely available R packages JM [40, 41] and

JMbayes [108], which can be downloaded from CRAN at:

http://cran.r-project.org/package=JM and:

http://cran.r-project.org/package=JMbayes, respectively.



Chapter 6

General Discussion

In this thesis we have studied several extensions of joint models for longi-

tudinal and time-to-event data. In particular, Chapters 2 and 3 presented

methods that can be used as an alternative to joint modeling approach in

special settings. In Chapter 2 we proposed a two-stage procedure that can

be applied in case when the longitudinal measurements are collected before

the start of follow-up for survival response. The method can be applied for

any type of longitudinal responses, such as continuous, ordinal, binary. In

Chapter 3 we utilized multistate models and the pseudo-values approach,

which allows to account for the variability in the longitudinal response when

modeling survival using the whole history of this response. This has a great

advantage compared to other methods for non-Markov models where the his-

tory of the process is of interest. It is also simpler and less computationally

intensive than the Bayesian joint model approach presented in Chapter 4.

Dynamic predictions are becoming popular in all observational studies

where patients are observed along time and there might be a need for an in-

145
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termittent intervention. Using the freely available shiny package an interface

for the R code was written based on the joint models presented in Chapter

4 resulting in a user-friendly tool for producing dynamic predictions. That

tool can be helpful in everyday clinical practice in decision making about po-

tential intervention. In addition, the fully Bayesian joint model of Chapter

4 allows to handle more than one survival responses, as in competing risks

settings. Unlike the traditional landmark approach for dynamic predictions,

presented in Chapter 5, different association structures between longitudi-

nal and survival processes can be specified and implemented using the joint

modeling approach.

6.1 Underlying Assumptions

In all joint models in this thesis the visiting and censoring processes were

assumed noninformative. Nevertheless, in real data problems, we are often

faced with so-called doctor’s-care visiting scheme, i.e., when the physician

decides about the date of next visit based on the current health status of

the patient. Examinations can also take place at regular intervals, i.e., all

patients are examined or observed at preassigned intervals. This situation

occurs frequently in medical studies since examination times are often preas-

signed. Finally, we can be faced with random visiting schemes under which

all subjects are examined at random times, independent of their disease his-

tory. Grüger et al. [69] showed that these three schemes are not informative

when likelihood methods are used, because the likelihood given one of these

examination schemes is proportional to the likelihood obtained when the

examination scheme is fixed in advance.
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In Chapter 3, when dealing with categorical longitudinal responses in the

context of multi-state modeling we show that interval-censoring is a much

more common problem than the nonignorable visiting process. This raises

from the fact that even with ignorable visiting times, the exact times of

change in the categorical status of a patient are often only observed for the

final but not for the intermediate states. We showed that standard methods

used in multi-state modeling may be problematic when dealing with interval-

censoring. In contrast, using the joint modeling approach this can be easily

modeled under the Missing At Random (MAR) assumption. The eventual

misclassification in a categorical response could be handled similar as the

measurement error problem for continuous longitudinal response through the

latent formulation, both in the context of shared parameter or latent class

models [110]. Therefore, under MAR, the joint modeling approach allows for

ignorable visiting and censoring processes. As mentioned in Section 1, for the

real data application, it implies that the two processes depend only on the

observed history but neither on the event times, nor on future longitudinal

measurements. In particular, for the heart transplant data, as discussed in

Chapter 3, we had the ignorable doctor’s-care visiting scheme since given a

current state of the patient the evaluation took place every fixed number of

days and the length of this period depended on the particular current state.

Additionally for this data set we had to assume that the censoring was also

noninformative, i.e. that it did not depend on unobserved true event times

and/or future urgency status.

Recently Gueorguieva et al. [111] considered a joint model for longitudinal

outcome and competing risks with cause-specific dropouts that are interval

censored. Based on their likelihood formulation a subject remains at risk
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of all causes of dropout until an unknown time within the interval when

dropout for the given reason actually occurs. To simplify the problem it was

assumed that, if a subject is interval censored for a particular reason, then

she is right censored for the other competing reasons at the beginning of the

interval when dropout occurred choosing the beginning of the interval. As

noted by the authors, that approximation can lead to reasonable bias when

the gaps between observation times are large and the majority of the data

are interval censored.

MAR is closely related to another assumption in joint models, namely

the conditional independence. Under that assumption the longitudinal and

survival processes are independent conditional on the shared latent terms.

When this is violated the dropout process is not MAR. Unfortunately, the

MAR assumption is not testable using the available data, and sensitivity

analysis should be performed.

Furthermore, in the joint models that we considered in this thesis we

have assumed the normal distribution for the random effects. As shown by

Rizopoulos et al. [87] and Huang et al. [112] , for large number of measure-

ments per subject mi, an eventual misspecification of the random effects

distribution does not influence the results since it influences only the prior

distribution. In particular, as mi increases the role of the prior of random

effect bi in the posterior distribution of the random effects diminishes. How-

ever for categorical responses there is perhaps some concern as larger values

of mi are required.

Nevertheless, in general, we recommend, that a sensitivity analysis with

respect to any aspects of the modeling step, that is the chosen parametriza-

tion, MAR and/or conditional independence assumptions as well as the dis-
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tribution of the random effects, should be performed. In this thesis, for the

real data applications, as presented in Chapter 4 and 5, we focused only on

the impact of different model parameterizations on the results with respect

to the obtained predictions.

6.2 Model Selection Problem and Goodness

of Fit

As it was demonstrated in Chapter 4 the chosen parametrization for a joint

model may influence predictions, mainly for the survival part but much less

for the longitudinal response. Since we have many repeated measures per

individual there is a lot more information in the longitudinal process than

in the survival process in that setting. The simulations results presented

in Chapter 4, indicate that the misspecification of the joint model omit-

ting the time-dependent terms is most severe when the association between

the survival and longitudinal process is strong. In any case, one would like

to choose the best model from the set of models with different parameter-

izations. An alternative approach would be to average over models with

different parameterizations using Bayesian model averaging [113] . Another

alternative would be to use the measures proposed in Chapter 5, to choose

the best model, based on the quality of the derived predictions in terms of

calibration and discrimination.

Finally, when it comes to assessing modelling assumptions, a traditional

way is to examine the residuals. However, in joint models residual plots can

be misleading due to dropout. Patients that dropped out may have different

longitudinal evolutions than patients who do not. As a result the reference
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distribution of the residuals is not certain. To resolve this issue Rizopoulos

[114] proposed to use multiple imputation idea to impute missing patterns

using the predictive distribution p(ym
i | yo

i , Ti, δi, θ) where ym
i and yo

i denote

the missing and observed response vectors for ith subject, respectively, Ti

and δi is her failure time and failure indicator and θ denotes the vector

of model parameters. After the multiple imputation step a standard model

diagnostics for mixed effects and survival models can be used as for complete

data set. In particular, this procedure can be easily applied for the fully

Bayesian model from Chapter 4.

6.3 Estimation Methods and Computational

Issues

Under the likelihood approach in order to estimate the parameters of the

shared parameter models, one needs to use numerical integration over the

random effects and over the time variable. The dimension of the first inte-

grand is more problematic since it is related to the dimension of the longi-

tudinal response. This motivated us, in Chapter 4, to opt for a Bayesian

approach that avoids the integration over the random effects space via sam-

pling. However, even within the Bayesian framework we still have to ap-

proximate the integrand over the time variable. In our models we used the

Gauss-Kronrod quadrature rule, but other rules could also be applied. This

step of the estimation process is the most time-consuming, especially, in the

competing risks setting when we have separate submodels for different causes

of failure. As an alternative, instead of numerical integration, one can use

the approximation of the integral over time followed by Ibrahim et al. [25].
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This type of approximation was earlier proposed by Tsiatis, DeGruttola and

Wulfson [10]. For the model with only random effects shared the integrand

over time has a closed-form solution and the numerical methods are not

needed.

6.4 Directions for Future Work

The majority of settings in joint modeling literature present models with

a single longitudinal outcome and time-to-event. However, in practice pa-

tients are repeatedly measured for a number of outcomes that are potentially

predictive for the time-to-event. The separate analysis per longitudinal out-

come was shown to be less efficient than a joint analysis of all the markers

simultaneously ( [115], [116]). The issue of multiple correlated biomarkers

has been raised by many authors within different settings. Gueorguieva and

Sanacora [117] considered multivariate correlated probit models for a com-

bination of ordinal and continuous biomarkers. Proust-Lima [38] formulated

a latent class model approach for many correlated biomarkers and a binary

outcome being the probability of occurrence of the clinical event according

to the latent classes. Later a latent class model for the multivariate longi-

tudinal data and time-to-event was proposed [39]. Bayesian joint models for

multivariate longitudinal and survival data have been discussed by several

authors ( [26], [25], [27], [28]). In practice extending the joint model from

single to multiple continuous longitudinal outcome creates similar problems

as considering more categories in a model with a categorical outcome. In

the context of the proposed Bayesian joint model, in Chapter 4, this leads

to highly time- and memory consuming estimation that often suffers from
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convergence problems. Therefore, it is clear that we need alternative, less

computationally intensive methods that could be used in real data prob-

lems. Such an alternative could be the conditional score approach proposed

by Tsiatis and Davidian [20] and extended by Song et al. [21] for the multi-

variate longitudinal data. This method is based on estimating equations and

makes no distributional assumption on the underlying random effects, treat-

ing them as “nuisance”. As noted by authors, especially for the multivariate

longitudinal data, the cognitional score approach reduces considerably the

computational complexity compared to likelihood or Bayesian approaches.

With respect to the survival outcome a multivariate extension is to con-

sider multiple failure times per subject, such as recurrent event. Joint models

with recurrent events processes have been discussed by Liu and Huang [118]

and Rizopoulos [9]. However, this type of models require an additional

submodel for the recurrent events, increasing the computational complexity.

As noted in Section 6.2 the issue of model selection in joint modeling is

still under investigation and up to now not many solutions have been pro-

posed. When Bayesian methods are used for the estimation, a DIC or other

Bayesian criteria could be considered. However, due to the well-known limi-

tations of such criteria, future work could focus on developing more general

measures that would allow to choose the best model based on the quality

of the produced predictions in terms of calibration and discrimination, re-

gardless the estimation method. In particular, discrimination measures that

could be applied in a competing risk setting using joint models are of a special

interest. In the context of time-dependent ROC curves Heagerty et al. [119]

proposed several definitions of cases and controls. Saha and Heagerty [120]

and Zheng et al. [121] extended this definition for the competing risks setting.
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Depending on the particular setting we could consider different methods of

classifying subjects and use similar sampling procedure as Rizopoulos [86]

to estimate ROC in the joint modeling framework. This extension could be

applied to the fully Bayesian model from Chapter 4.
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Chapter 7

Summary/Samenvatting

Summary

Many medical studies involve analyzing longitudinal responses together with

event history data collected for each patient. A well-known and broadly

studied example can be found in AIDS research, where CD4 cell counts

taken at different time points are related to the time to death. In mainly two

occasions such data need to be jointly analyzed in order to properly account

for their association. First, when focus is on the longitudinal outcome, events

cause nonrandom dropout that needs to be accounted for in order to obtain

valid inferences. When focus is on the event times, the longitudinal responses

cannot be simply included in a relative risk model because they represent

the output of an internal time-dependent covariate [1].

In the framework of joint models, postulated by Faucett and Thomas [2]

and Wulfson and Tsiatis [3], the longitudinal responses are considered real-

izations of an endogenous time-dependent covariate (Kabfleisch and Pren-
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tice [1]), which is measured with error and for which we do not have the

complete history of past values available. To account for these features we

estimate the joint distribution of the survival and longitudinal processes.

Our research extend this standard approach in joint modeling in several

ways. In particular, in Chapter 2 we present a two-stage procedure that

can be used as an alternative to joint modeling approach in case when the

longitudinal measurements are collected before the start of follow-up for sur-

vival response. This setting is often encountered in transplantation studies,

where patients provide a series of longitudinal outcomes that are related to

events occurring after transplantation. In contrast with the standard joint

modeling setting, the longitudinal responses do not constitute an endoge-

nous time dependent variable measured at the same period as the time to

event. Nevertheless, the problem of measurement error still remains. The

proposed two-stage procedure handles the problem of measurement error via

Monte Carlo sampling from the posterior distribution of the random effects.

We apply this approach for nonlinear longitudinal response and compare the

results with the “naive" plug-in approach when the uncertainty about the

estimates from the first step is not taken into account, as well as with the

full Bayesian approach.

In Chapter 3 we consider categorical longitudinal responses in the pres-

ence of competing risks. We show how this problem can be handled using

multi-state models techniques. In particular we use the pseudo-values ap-

proach introduced by Andersen et al. [45] and apply it for the Aalen-Johansen

estimator of the state occupation probabilities since the transition probabil-

ities were found to depend on the history. This approach allows to study the

impact of baseline information on the occupation probabilities treating the
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dependence on the history as a nuisance. To address the problem of those

competing events a multinomial approach is used for the next state given

the previous state observed. This has a great advantage compared to other

methods for non-Markov models where the history of the process is of inter-

est and no standard approaches are available. In Chapter 4 we formulate the

problem in the joint modeling framework and propose a Bayesian model for

joint modeling of categorical longitudinal data and time-to-event response

taking into account the presence of competing risks.

The majority of prognostic models in the medical literature utilize only a

small fraction of the available biomarker information not taking into account

that the rate of change in the biomarker levels is not only different from pa-

tient to patient but also dynamically changes over time for the same patient.

In Chapter 4, we present how the joint modeling approach can be used for

updating the patients’ predictions in the presence of competing risks. In par-

ticular, for the developed Bayesian joint model we derive posterior predictive

distributions for the longitudinal and event time outcomes. Additionally, we

also examine the impact of different parameterizations of the joint model on

the obtained predictions. In contrary with the multi-state approach from

Chapter 3 the interval-censoring problem is handled under the Missing At

Random (MAR) assumption.

In Chapter 5 we compare the joint modeling technique for making dy-

namic predictions with an older method for producing such predictions,

called landmarking . We show how survival probabilities are obtained under

each method and what the differences are in the underlying assumptions.

In addition, we show how the functional relationship between the two pro-

cesses may affect predictions. To assess the quality of the derived predictions
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from the two approaches we present different measures of discrimination and

calibration , suitably adjusted to the context of longitudinal biomarkers.



159

Samenvatting

In vele medische studies worden longitudinale- en overlevingsgegevens verza-

meld voor elke patiënt. Een gekend voorbeeld van zulke data is te vinden in

het AIDS onderzoek. Hierbij wordt het aantal CD4-cellen op verschillende

tijdstippen gemeten dewelke gerelateerd zijn aan het tijdstip van overlij-

den. Voor zulke data zijn er in het algemeen twee types van vraagstellingen.

Ten eerste, wanneer men gëinteresseerd is in de evolutie van de longitudinal

metingen, kan men een (veralgemeend) lineair model gebruiken. Echter, dit

model onderstelt dat de uitval gebeurt volgens een specifiek missing data

patroon, genaamd “missing at random” en een uitbreiding van dit model

dat rekening houdt met het “nonrandom dropout” gedrag van de uitvallers.

Het gezamenlijk modelleren van de longitudinale- en overlevingsgegevens laat

een meer complex missing data mechanisme toe. Wanneer de interesse ligt

in het overlevingsproces, levert het gezamenlijk modelleren betere resultaten

op dan de klassieke techniek met tijdsafhankelijke covariaten [1].

In de standaard aanpak van gemengde modellen door Faucett & Thomas

[2] en Wulfsohn & Tsiatis [3]) worden de longitudinale data gezien als real-

isaties van een endogeen tijdsafhankelijke covariaat ( [1]) gemeten met fout

en waarvoor de historische gegevens maar gedeeltelijk gekend zijn. Met deze

techniek wordt de gezamenlijke verdeling van de overleving en longitudinale

processen bepaald. Dit wordt behandeld in hoofdstuk 1. In dit hoofdstuk

geven we ook een beschrijving van de datasets die ons onderzoek hebben

gemotiveerd. Tot slot worden in dit hoofdstuk de doelstellingen van dit

proefschrift uiteengezet.

In deze thesis breiden we de bovenstaande standaard aanpak uit op ver-
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schillende manieren. In Hoofdstuk 2 presenteren we een twee-fasen pro-

cedure als een alternatief voor de hierboven vermeldde gemengde modellen

benadering in het geval dat longitudinale metingen voorafgaand aan de eigen-

lijke longitudinale studie werden verzameld. Dit gebeurt vaak bij transplan-

tatie studies, waarbij longitudinale metingen van de patiënten gekend zijn

dewelke kunnen gerelateerd zijn aan verwikkelingen na transplantatie. In

tegenstelling tot de standaard gemengde modellen benadering, is de longitu-

dinale respons nu geen endogene tijdafhankelijke variabele en wordt deze niet

op hetzelfde tijdstip gemeten als het gebeuren. Echter, ook nu moeten we

rekening houden met meetfouten. Deze worden in de twee-fasen procedure in

rekening gebracht via Monte Carlo sampling van de a posteriori verdeling van

de random effecten. Deze techniek hebben we toegepast op niet-lineaire lon-

gitudinale data. We vergelijken onze techniek met de “ näieve " benadering

waarbij geen rekening wordt gehouden met de inherente meetfout. Verder

vergelijken we onze benadering ook met een pure Bayesiaanse aanpak.

In hoofdstuk 3 hebben we categorische longitudinale data geanalyseerd

in combinatie met verscheidene oorzaken voor falen ( competing risks). We

tonen aan hoe dit probleem met behulp van modellen voor meerdere sta-

dia ( multi-state modellen) kan aangepakt worden. Hiervoor gebruikten we

pseudo - observaties, zoals voorgesteld door Andersenet al. [45]. Deze tech-

niek hebben we toegepast op de Aalen-Johansen schatter van de kans dat

een individu zich in een bepaald stadium bevindt. Deze schatter laat immers

toe dat de transitiekansen (kans dat men verandert van stadium) afhankelijk

zijn van voorafgaandelijke gebeurtenissen. Deze techniek laat ook toe om het

effect van start informatie te gebruiken daarbij abstractie makende van de

gebeurtenissen in de tijd. Een multinomiaal model werd gebruikt om de con-
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ditionele kans te modelleren om naar een volgend stadium over te stappen

in de aanwezigheid van meervoudig falen. Deze aanpak heeft voordelen tov

andere niet-Markov modellen waarbij men ge ïnteresseerd is in de geschiede-

nis van het proces en waarvoor geen standaard benaderingen beschikbaar

zijn. In hoofdstuk 4 gebruiken we een Bayesiaanse gemengd model voor

categorische longitudinale data gecombineerd met overlevingstijden daarbij

rekening houdend met mogelijk meervoudig falen.

De meerderheid van prognostische modellen in de medische literatuur

gebruiken slechts een klein deel van de beschikbare biomarkers en houden

geen rekening met hun longitudinale evolutie tussen en binnen pati ënten.

In hoofdstuk 4 illustreren we hoe de gemengde modellen gebruikt kunnen

worden om voorspellingen te doen in de context van meervoudig falen. In de

context van het Bayesiaans gemengd model leiden we een posterior predic-

tieve verdelingen af voor de longitudinale response en voor het tijdstip van

het falen. Daarnaast onderzochten we ook de invloed van de verschillende

parameterisaties van de gemengde modellen op de voorspellingen. In tegen-

stelling met de multi- state benadering van hoofdstuk 3, nemen we nu het

interval-gecensureerd karakter van de response in rekening onder de Missing

At Random (MAR) aanname.

In hoofdstuk 5 vergelijken we de dynamische voorspelling van onze gemengde

modellen benadering met een concurrerende techniek, in het Engels genaamd

‘landmarking’. We tonen hoe overlevingskansen verkregen worden onder

beide methoden en wat de verschillen in de onderliggende aannames zijn.

Verder tonen we hoe de functionele relatie tussen de twee processen de voor-

spellingen kan be ï nvloeden. Om de kwaliteit van de afgeleide voorspellingen

van de twee benaderingen te beoordelen, stellen we verschillende aangepaste
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maten (aangepast aan de longitudinale biomarkers) voor discriminatie voor.



Appendix A

This appendix is contains supplementary material for the paper presented

in Chapter 2).

A.1 Renal Resistance Data. Descriptives

The individual profiles for different types of donor and different regions are

presented in Figure A.2. It can be observed that there is some variability

in the RR level at time zero, in asymptotes and also in the “slopes". After

putting the kidney into the machine there is a rise of RR level for both H-B

and N-H-B. This later stabilizes and appears to be almost constant. The

same behavior is visible for the three donor regions. The mean profiles for

different donor types and regions are presented in Figure A.1. N-H-B have

higher RR level as compared to the N-H-B donors. Donors from different

regions have more less similar mean RR profiles with a bit higher RR mean

initial value for Region 2 and the lowest asymptote for Region 1. There were

not N-H-B donors from Region 2 present in the data set. Figure A.3 presents

the results from a nonlinear mixed model for the renal data.
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A.2 Metropolis-Hastings algorithm

Metropolis-Hastings algorithm is a Markov chain Monte Carlo method for

obtaining a sequence of random samples from a probability distribution for

which direct sampling is not straightforward. The M-H algorithm is defined

by two steps: a first step in which a proposal value is drawn from the can-

didate generating density and a second step in which the proposal value is

accepted as the next iterate in the Markov chain according to the defined

probability or rejected and then the next sampled value is taken to be the

current value.

In order to sample form the posterior distribution for random effects for

a particular individual i according to the algorithm described in Section 3.2

of the article in each step k we propose the density q for αi. The pro-

posal density was chosen to be a multivariate t distribution with 4 df, mean

equal the Empirical Bayes estimate obtained from the nonlinear mixed model

and variance-covariance matrix D also estimated from the nonlinear mixed

model, additionally scaled by some parameter Scale. Before the start of the

analysis the tuning parameter Scale was calibrated in order to achieve the

acceptance rate equal 0.5. We run 300 iterations for the calibration.

The procedure can be described as below:

Step 0 :

α0
i = EB(αi)

Step K:

α∗
i ∼ q(EB(αi), Scale ∗ D)(proposition for αi)
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Calculate acceptance-rejection criterion:

ri = p(α∗
i | Yi,θy)q(αk−1

i , Scale ∗ D)
p(αk−1

i | Yi,θy)q(α∗
i , Scale ∗ D)

,

where θy is the vector of fixed effects sampled using the estimates from the

nonlinear mixed model.

Since the posterior distribution p(αi | Yi,θy) is unknown, we use the fact

that:

p(αi | Yi,θy) ∝ p(Yi | αi,θy)p(αi),

and therefore the acceptance-rejection criterion takes the form:

ri = p(Yi | α∗
i ,θy)p(α∗

i )q(αk−1
i , Scale ∗ D)

p(Yi | αk−1
i ,θy)p(αk−1

i )q(α∗
i , Scale ∗ D)

.

In above criterion p(Yi | αi,θy) is a Gaussian density for individual i with a

mean being a nonlinear function of random and fixed effects f(αi,θy) and

variance σ2 estimated from the nonlinear mixed model. p(αi) is the multi-

variate normal distribution with mean zero and a scaled variance-covariance

matrix D.

Draw from uniform distribution:

u ∼ U(0, 1).

If ri ≤ u (accept proposition α∗
i for αi):

αk
i = α∗

i ,
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otherwise reject α∗
i :

αk
i = αk−1

i .

Since we always propose the q density around the EB estimates for αi this

procedure is an independence version of Metropolis-Hastings algorithm.



A.3 Tables and Figures 167

A.3 Tables and Figures

Table A.1: Parameter estimates, standard errors and 95% credibility intervals
from the longitudinal part of the joint fully Bayesian model with Weibull survival
submodel

RR

Effect Parameter Estimate SE (95%HPD)
ϕ1

Constant β10 2.862 0.143 (2.582; 3.142)
Donor Age β11 0.011 0.004 (0.003; 0.018)
Donor Type (HB vs NHB) β12 -0.106 0.118 (-0.337; 0.125)
Donor Region 1 vs 3 β13 -0.09 0.096 (-0.278; 0.098)
Donor Region 2 vs 3 β14 -0.08 0.100 (-0.276; 0.116)

ϕ2

Constant β20 3.540 0.341 ( 2.872; 4.208)
Donor Age β21 0.004 0.008 (-0.011; 0.020)
Donor Type (HB vs NHB) β22 -0.080 0.196 (-0.464; 0.304)
Donor Region 1 vs 3 β23 -0.094 0.314 (-0.709; 0.521)
Donor Region 2 vs 3 β24 0.045 0.216 (-0.378; 0.468)

ϕ3

Constant β30 1.335 0.257 (0.831; 1.839)
Donor Age β31 0.009 0.009 (-0.009; 0.027)
Donor Type (HB vs NHB) β32 0.540 0.133 (0.279; 0.801)
Donor Region 1 vs 3 β33 -0.234 0.127 (-0.483; 0.015)
Donor Region 2 vs 3 β34 -0.070 0.147 (-0.358; 0.218)
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(a) (b)

Figure A.1: Mean profiles of Renal Resistance for the two type of donors: Heart-
Beating (H-B) and Non-Heart-Beating (N-H-B) a) and 3 donor regions b)
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(a) Region 1 (b) Region 2

(c) Region 3

(d) Heart Beating (e) Non Heart Beating

Figure A.2: Individual profiles of renal resistance depending on donor region and
donor type (50 sampled ind. in each subgroup)
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(a) HB Region 1 (b) NHB Region 1

(c) HB Region 2 (d) HB Region 3

(e) NHB Region 3

Figure A.3: Mean original (solid) and fitted (dashed) RR profiles for both donor
types and all donor regions
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Figure A.4: RR Parameter estimates from the nonlinear mixed model together
with 25 % and 95% quartiles calculated using Monte Carlo method for arbitrary
chosen individuals.
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Figure A.5: Random effects estimates together with EB (horizontal lines) es-
timates obtained from Monte Carlo sampling procedure for arbitrary chosen
individuals.



Appendix B

This appendix is contains supplementary material for the paper presented

in Chapter 3).

B.1 Generalized Estimating Equations (GEE)

In GEE (Generalized Estimating Equations) a generalized linear model is

considered:

g(θ̂i) = βT Zi,

where g is a link function and i is individual index.

Typically a column Zi0 to Zi is added to allow for intercept β0. The estimates

of β are based on unbiased estimating equations:

∑
i

{
( d

dβ
g−1(βT Zi)

}T
V −1{

θ̂i − g(βT Zi)
}

=
∑

i

Ui(β) = U(β) = 0, (B.1)
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where V−1 is a working covariance matrix.

A sandwich estimator is used to estimate the variance of β.

Let

I(β̂) =
∑

i

{ d

dβ
g−1(βT Zi)

}T
V −1{ d

dβ
g−1(βT Zi)

}
,

and ˆV ar(β̂) =
∑

i

Ui(β̂)T Ui(β̂). (B.2)

Then
ˆV ar(β̂) ≈ I(β̂)−1 ˆV ar(U(β̂))I(β̂)−1. (B.3)

The estimators of β can be shown to be asymptotically normal [80] and the

sandwich estimator converges in probability to the true variance.

B.2 Multi-state models

B.2.1 General framework

A multi-state process is defined as a stochastic process with a finite state

space K = {1, 2, . . . , N} in time interval Γ = [0, τ ], τ < ∞. For any time t,

X(t) denotes the state occupied at that time. The process is fully charac-

terized by the transition probabilities between states h and r, defined as:

phr(s, t) = Pr(X(t) = r | X(s) = h, Hs−), h, r ∈ K; s, t ∈ Γ; s ≤ t, (B.4)
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where Hs− = X(t), 0 ≤ t < s, denotes the history of the process before time

s.

A multistate process can be also characterized through the transition inten-

sities:

qhr(s) = lim
∆s→0

phr(s, s + ∆s)
∆s

, (B.5)

where qhr is interpreted as the instantaneous hazard of progression from

state h to state r, conditionally on occupying state h. These intensities

are analogous to the standard hazard function in the Cox model. Both phr

and qhr in principle may depend on the history Hs− and time. In Markov

models we assume that the dependence on the history is only through the

current state, and in the special case of time homogenous Markov models the

transition probabilities/intensities are assumed constant in time. Another

class of models are the semi-Markov models where the transition intensity

qhr is allowed to depend on the duration in state h. A model where there is

only duration dependence is called homogenous semi-Markov model.

When the Markov assumption is violated, it may be difficult to obtain

unbiased estimates of the transition probabilities. In that case the state oc-

cupation probabilities ph(t) are often considered, that express the probability

of occupying state h at time t:

ph(t) =
N∑

k=1

pk(0)pkh(0, t), (B.6)
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where pk(0) is initial distribution at time 0. The corresponding Aalen-

Johansen estimates of occupation probabilities are unbiased even when the

Markov assumption is violated.

B.2.2 Likelihood for multi-state Markov models

Let i = 1, 2, . . . , M denote the individuals. The data for individual i consist

of a series of times (ti1, . . . , tiM ) and corresponding states (X(ti1), . . . , X(tiM )).

Consider a model where we observe a pair of successive observed states X(tj)

and X(tj+1) at times tj and tj+1. Then the contribution to the likelihood

from this pair of states is:

Lij = pX(tj)X(tj+1)(tj+1 − tj). (B.7)

This is entry of transition matrix P (t) at X(tj)th row and X(tj+1)th

column, evaluated at time t = tj+1 − tj .

For exact transition times the likelihood contributions are:

Lij = pX(tj)X(tj+1)(tj+1 − tj)qX(tj)X(tj+1), (B.8)

since the state is assumed to be X(tj) thorough the interval between tj and

tj+1 with a known transition to state X(tj+1) at tj+1.

Transition times to final states are always exact. Let D-death state.

If X(tj+1) = D then the contribution to likelihood is summed over the
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unknown states k on the day before death:

Lij =
∑
k ̸=D

pX(tj)k(tj+1 − tj)qkD, (B.9)

The sum is taken over all possible states k which can be visited between

X(tj) and D.

B.2.3 Parametric approach for Markov models

For a general multi-state Markov model the transition probability matrix P

is the unique solution to P (s, s) = I, and the Kolmogorov forward differential

equations:

d

dt
phr(s, t) =

∑
j

phj(s, t)qjr(t), (B.10)

where qjr are the elements of the transition-intensity matrix Q. If Q is con-

stant over the interval (s, t), as in time homogenous Markov models, then

P (s, t) = P (t − s) = P (d), and the Kolmogorov equations (B.10) can be

solved by the matrix of exponential of Q scaled by the time interval d:

P (d) = exp(dQ). (B.11)

For simpler models analytic expressions for each element of P (d) can be

calculated in terms of Q. The solution is based on an eigensystem decom-

position of the intensity matrix Q.

Since for the Markov processes homogenous in time the transitions prob-

abilities can be derived from the transition intensities, one can use stan-

dard hazard-based models to model the intensities using baseline covariates.
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These may include both multiplicative hazard models and additive hazard

models. The most popular is the multiplicative semi-parametric Cox regres-

sion model, which we use to model the intensity of transition from a given

state h to any other state r:

qihr(t) = q0hr(t) exp(βT
hrZi). (B.12)

Here q0hr(t) denotes the baseline hazard function of time t and β is the

regression coefficients vector for the covariates vector Zi for each individual

i, i = 1, . . . , M . In a Cox model q0hr(t) we considered a fully parametric

model, with for common piecewise constant hazard model where for chosen

cut-points 0 = τ0 < τ1 < . . . < τL = τ the hazard function q0hr(t) = q0(t) is

assumed to be constant, q0 = ql, τl−1 ≤ t < τl, l = 1, . . . , L.
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(a)

from/to D NT HU U T R TT
D 0 0 0 0 0 0 0

NT 175 103 14 1 618 149 0
HU 74 166 11 203 187 6 915
U 5 12 293 1 106 1 46
T 273 887 1249 262 2809 83 605
R 0 0 0 0 0 0 0

TT 0 0 0 0 0 0 0


(b)

from/to D NT HU U T R TT
D 1 0 0 0 0 0 0

NT 1.02 ∗ 10−3 0.965 7 ∗ 10−3 3 ∗ 10−4 0.025 3.18 ∗ 10−4 1.54 ∗ 105

HU 1.06 ∗ 10−5 0.02 0.908 0.067 0.002 3.32 ∗ 10−6 1.57 ∗ 10−3

U 1.52 ∗ 10−6 0.003 0.188 0.774 0.031 7.32 ∗ 10−7 2.4 ∗ 10−3

T 7.97 ∗ 10−6 0.015 0.016 0.006 0.961 2.2 ∗ 10−5 7 ∗ 10−4

R 0 0 0 0 0 1 0
TT 0 0 0 0 0 0 1


Figure B.1: Matrix of the observed transitions a) and estimates from Markov
model b). Elements in bold are constrained. Diagonal elements cannot be con-
strained (intensities for diagonal elements are estimated as a sum of all remaining
elements in the row).



180

0 500 1000 1500

0
40

80

D

Days

P
er

ca
nt

ag
e

0 500 1000 1500

0
40

80

NT

Days
P

er
ca

nt
ag

e

0 500 1000 1500

0
40

80

HU

Days

P
er

ca
nt

ag
e

0 500 1000 1500

0
40

80

U

Days

P
er

ca
nt

ag
e

0 500 1000 1500

0
40

80

T

Days

P
er

ca
nt

ag
e

0 500 1000 1500

0
40

80

R

Days

P
er

ca
nt

ag
e

0 500 1000 1500

0
40

80

TT

Days

P
er

ca
nt

ag
e

Observed
Expected

Figure B.2: Expected (dashed) and observed (solid) prevalence assuming Markov
model for each state.
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Figure B.3: Expected (dashed) and observed (solid) prevalence for state T as-
suming Markov model after adjustment for blood group.
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Figure B.4: Observed and expected prevalence assuming PCI Markov Model for
each state with cut point t=500 days.
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B.2.4 Non-parametric approach for Markov Models

We will now consider a multi-state Markov process defined in Section 3.2.1

for which the transition times are assumed to be observed exactly. In ad-

dition let Nhri denotes a multivariate counting process for individual i,

(i = 1, 2, . . . , M) that counts the number of direct transitions from h to

r observed for that subject in the time interval [0,t]. Let also Yhi denote the

indicator variable taking the value 1 when individual i is in state h at time

t−, and 0 otherwise. A nonparametric estimator for the transition proba-

bility matrix P (s, t) (B.10) can be obtained by employing the Nelson-Aalen

estimator. In particular, the cumulative transition intensity:

Ahr(t) =
∫ t

0
qhr(u)du. (B.13)

is estimated by:

Âhr(t) =
∫ t

0

dNhr(u)
Yh(u)

, (B.14)

where Nhr =
∑

i Nhri and Yh =
∑

i Yhi.

Let A(t) denote the (absolutely continuous) cumulative transition intensity

matrix. One can show that the solution of the Kolmogorov Equations (B.10)

is the matrix product-integral:

P (s, t) = R
(s,t]

(I + q(u)du), (B.15)
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defined as:

lim
max|si−si−1|→0

∏
(I + A(si) − A(si−1))), (B.16)

where s = s1 < s2 < . . . < si−1 < si < . . . = t.

By plugging in the Nelson-Aalen estimator for the cumulative transition

intensity Âhr(t) (with Âhh(t) = −
∑

j ̸=h Âhj(t)) into the product integral

we obtain:

P̂ (s, t) = R
(s,t]

(I + dÂ(u)), (B.17)

This estimator has been proposed by Aalen and Johansen and its large sam-

ple properties can be derived using the martingale theory ( [79]; [82]).

B.3 Results from pseudo-values approach for

Heart Data

Table B.1: Estimates of the effect of baseline covariates on occupation proba-
bility for state Death. Results from the regression model on pseudo-values.

Estimate SE p-value

Intercept -2.915 0.455 < 0.001
Time (Days) -0.309 8.2∗10−6 < 0.001
Age 9.8∗10−4 4.5∗10−4 0.030
Blood B vs A -0.029 0.022 0.184
Blood AB vs A -0.080 0.026 0.003
Blood 0 vs A 0.008 0.016 0.613
DCM vs CAD -0.040 0.038 0.297
Other Disease vs CAD -0.028 0.04 0.476
IConsent (Y vs No) 0.058 0.02 < 0.001
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Figure B.5: Aalen-Johansen estimators for transition probabilities Phr(0, t).

Table B.2: Estimates of the effect of baseline covariates on occupation probabil-
ity for state Non-Transplantable. Results from the regression model on univariate
pseudo-values.

Estimate SE p-value

Intercept -1.98 0.151 < 0.001
Time (Days) 0.18 2.2∗10−6 < 0.001
Age −1.5 ∗ 10−4 1.7 ∗ 10−4 0.365
Blood B vs A 7.2 ∗ 10−4 0.009 0.937
Blood AB vs A 0.005 0.010 0.729
Blood 0 vs A 0.006 0.007 0.341
DCM vs CAD 0.04 0.007 < 0.001
Other Disease vs CAD 0.01 0.007 0.054
IConsent (Y vs No) 0.01 0.006 0.004
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Figure B.6: Aalen-Johansen estimators for occupation probability for state Death
for patients with different baseline characteristics.
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Figure B.7: Aalen-Johansen estimators for occupation probability for state Non-
Transplantable for patients with different baseline characteristics.

Table B.3: Estimates of the effect of baseline covariates on occupation prob-
ability for state High Urgent. Results from the regression model on univariate
pseudo-values.

Estimate SE p-value

Intercept -6.653 0.054 < 0.001
Time 0.073 3.4 ∗ 10−6 < 0.001
Age 3.2 ∗ 10−4 7.6 ∗ 10−5 < 0.001
Blood B vs A -0.008 0.002 < 0.001
Blood AB vs A -0.009 0.002 < 0.001
Blood 0 vs A 0.003 0.002 < 0.001
DCM vs CAD 0.004 0.003 0.281
Other Disease vs CAD 0.004 0.004 0.291
IConsent (Y vs No) 0.013 0.001 < 0.001
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Figure B.8: Aalen-Johansen estimators for occupation probability for state
Transplantable for patients with different baseline characteristics.
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Figure B.9: Aalen-Johansen estimators for occupation probability for state High
Urgent for patients from countries with(I-C) and without(N-IC) informed consent
law.

Table B.4: Estimates of the effect of baseline covariates on occupation proba-
bility for state Urgent. Results from the regression model on univariate pseudo-
values.

Estimate SE p-value

Intercept -8.309 0.004 < 0.001
Time 0.013 2.9 ∗ 10−6 < 0.001
Age 3.8 ∗ 10−5 4.4 ∗ 10−5 0.379
Blood B vs A 7.1 ∗ 10−5 0.003 0.979
Blood AB vs A -0.002 0.002 0.314
Blood 0 vs A 0.001 0.002 0.390
DCM vs CAD -0.001 0.003 0.691
Other Disease vs CAD -0.002 0.003 0.521
IConsent (Y vs No) 0.009 0.001 < 0.001
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Figure B.10: Aalen-Johansen estimators for occupation probability for state Re-
moved for patients with different baseline characteristics.



B.3 Results from pseudo-values approach for Heart Data 191

Table B.5: Estimates of the effect of baseline covariates on occupation proba-
bility for state Transplantable. Results from the regression model on univariate
pseudo-values.

Estimate SE p-value

Intercept -9.090 0.223 < 0.001
Time 1.06 0.001 < 0.001
Age 0.002 2.5 ∗ 10−4 < 0.001
Blood B vs A -0.015 0.015 0.323
Blood AB vs A -0.067 0.017 < 0.001
Blood 0 vs A 0.009 0.018 0.379
DCM vs CAD 0.085 0.017 < 0.001
Other Disease vs CAD 0.045 0.018 0.014
IConsent (Y vs No) 0.068 0.010 < 0.001

Table B.6: Estimates of the effect of baseline covariates on occupation prob-
ability for state Removed. Results from the regression model on univariate
pseudo-values.

Estimate SE p-value

Intercept -2.080 0.317 < 0.001
Time -0.321 0.001 < 0.001
Age −7.6 ∗ 10−5 4.4 ∗ 10−4 0.861
Blood B vs A 0.015 0.019 0.422
Blood AB vs A -0.010 0.024 0.679
Blood 0 vs A 0.039 0.014 0.006
DCM vs CAD 0.051 0.022 0.018
Other Disease vs CAD 0.041 0.024 0.084
IConsent (Y vs No) 0.048 0.012 < 0.001
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Table B.7: Estimates of the effect of baseline covariates on occupation proba-
bilities for all states. Results from the regression model on multivariate pseudo-
values.

Estimate SE p-value

Intercept (Death) -2.813 0.442 < 0.001
NT 8.835 0.454 < 0.001
HU 1.893 0.459 < 0.001
T -7.534 0.492 < 0.001
U 2.837 0.443 < 0.001
RR 2.568 0.504 < 0.001
TT -6.539 0.668 < 0.001
Time -0.328 8.0 ∗ 10−6 < 0.001
Age 8.5 ∗ 10−4 4.3 ∗ 10−4 0.048
Blood B vs A -0.021 0.021 0.330
Blood AB vs A -0.072 0.025 0.004
Blood 0 vs A 0.009 0.015 0.056
DCM vs CAD -0.048 0.037 0.197
Other Disease vs CAD -0.034 0.039 0.388
IConsent (Y vs No) 0.052 0.015 < 0.001
Time:NT 0.491 9.9 ∗ 10−6 < 0.001
Time:HU 0.439 8.6 ∗ 10−6 < 0.001
Time:U 0.326 8.3 ∗ 10−6 < 0.001
Time:T 1.581 1.3 ∗ 10−5 < 0.001
Time:RR 1.298 1.2 ∗ 10−5 < 0.001
Time:TT -0.525 1.3 ∗ 10−5 < 0.001
Age:NT -0.001 4.6 ∗ 10−4 0.015
Age:HU -0.001 4.4 ∗ 10−4 0.004
Age:U −7.9 ∗ 10−4 4.3 ∗ 10−4 0.068
Age:T 9.1 ∗ 10−4 4.9 ∗ 10−4 0.066
Age:RR -0.001 5.4 ∗ 10−4 0.049
Age:TT -0.003 6.8 ∗ 10−4 < 0.001
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Table B.7: Estimates of the effect of baseline covariates on occupation proba-
bilities for all states. Results from the regression model on multivariate pseudo-
values cont.

Estimate SE p-value

Blood B vs A:NT 0.020 0.022 0.368
Blood B vs A:HU 0.009 0.021 0.659
Blood B vs A:U 0.021 0.021 0.326
Blood B vs A:T 4.9 ∗ 10−4 0.026 0.984
Blood B vs A:RR 0.036 0.025 0.149
Blood B vs A:TT 0.057 0.034 0.097
Blood AB vs A:NT 0.077 0.028 0.007
Blood AB vs A:HU 0.060 0.025 0.017
Blood AB vs A:U 0.069 0.025 0.006
Blood AB vs A:T 7.1 ∗ 10−4 0.030 0.981
Blood AB vs A:RR 0.067 0.031 0.023
Blood AB vs A:TT 0.226 0.043 < 0.001
Blood 0 vs A:NT -0.004 0.017 0.822
Blood 0 vs A:HU -0.006 0.016 0.725
Blood 0 vs A:U -0.007 0.016 0.640
Blood 0 vs A:T −3.4 ∗ 10−4 0.019 0.985
Blood 0 vs A:RR 0.010 0.018 0.583
Blood 0 vs A:TT -0.057 0.024 0.019
IConsent (Y vs No):NT -0.042 0.017 0.012
IConsent (Y vs No):HU -0.035 0.015 0.026
IConsent (Y vs No):U -0.044 0.015 0.005
IConsent (Y vs No):T 0.009 0.018 0.608
IConsent (Y vs No):RR -0.026 0.018 0.145
IConsent (Y vs No):TT -0.227 0.024 < 0.001
DCM vs CAD:NT 0.089 0.038 0.019
DCM vs CAD:HU 0.052 0.038 0.168
DCM vs CAD:U 0.049 0.038 0.193
DCM vs CAD:T 0.142 0.041 < 0.001
DCM vs CAD:RR 0.063 0.042 0.014
DCM vs CAD:TT -0.053 0.056 0.340
Other Disease vs CAD:NT 0.050 0.040 0.212
Other Disease vs CAD:HU 0.039 0.039 0.322
Other Disease vs CAD:U 0.033 0.039 0.407
Other Disease vs CAD:T 0.085 0.043 0.049
Other Disease vs CAD:RR 0.052 0.044 0.244
Other Disease vs CAD:TT -0.018 0.059 0.754
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B.4 Results from multinomial model approach

for Heart Data

Table B.8: Estimates of log(OR) for the effect of current state and time on the
probability for the next transition from the current state HU and T based on the
multinomial model with the previous state Urgent, adjusted for time. Baseline
category is probability of death. Jackknife SE are calculated. The estimates for
the time effect are not listed.

Previous=U

Current=HU Current=T

Intercept Intercept

P(NT)/P(D) 0.22(0.68) 1.38(0.98)
P(HU)/P(D) - 2.18(0.96)
P(U)/P(D) 2.10(0.61) 2.70(1.21)
P(T)/P(D) 0.86(0.77) -
P(R)/P(D) -2.30(2.35) 0.38(1.29)

P(TT)/P(D) 2.53(0.60) 0.49(1.05)
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Table B.9: Estimates of log(OR) for the effect of current state and time on the
probability for the next transition from the current state T, NT and U based on
the multinomial model with the previous state High Urgent, adjusted for time.
Baseline category is probability of death (Current=T or NT) or High Urgent.
Jackknife SE are calculated. The estimates for the time effect are not listed.

Previous=HU

Current=T Current=NT Current=U

Intercept Intercept Intercept

P(NT)/P(D) -0.78(0.48) -
P(HU)/P(D) 0.69(0.37) -1.67(0.52)
P(U)/P(D) -1.81(0.58) -
P(T)/P(D) - 0.55(0.25) P(T)/P(HU) -1.32(0.32)
P(R)/P(D) -1.07(0.50) -2.24(0.58)

P(TT)/P(D) -2.02(0.61) - P(TT)/P(HU) -2.41(0.33)

Table B.10: Estimates of log(OR) for the effect of current state and time on the
probability for the next transition from the current state Transplantable based
on the multinomial model with the previous state Non Transplantable adjusted
for time. Baseline category is probability of death. Jackknife SE are calculated.
The estimates for the time effect are not listed.

Previous=NT

Current=T

Intercept

P(NT)/P(D) 2.39(0.46)
P(HU)/P(D) 2.43(0.39)
P(U)/P(D) 0.49(0.50)
P(T)/P(D) -
P(R)/P(D) -

P(TT)/P(D) 2.07(0.37)



196

B.5 Results from simulation study
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(a) (b)

(c) (d)

Figure B.11: Median of Aalen-Johansen estimates for occupation probability for
state Transplanted (T) (a,c) and High-Urgent (b,d) for the data simulated from
Markov model with group effect on qiT T (a,b) and non-Markov Model with
group effect on qiT T and on the history (c,d).
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(a) (b)

(c) (d)

Figure B.12: Median of Aalen-Johansen estimates for occupation probability
for state Transplanted (TT) (a,c) and Death (b,d) (for the data simulated from
Markov model with group effect on qiT (a,b) and non-Markov Model with group
effect on qiT and on the history (c,d).
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(a) (b)

(c) (d)

Figure B.13: Median of Aalen-Johansen estimates for occupation probability for
state Transplantable (T) (a,c) and High-Urgent (b,d) for the data simulated
from Markov model with group effect on qiT (a,b) and non-Markov Model with
group effect on qiT and on the history (c,d).
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Appendix C

This appendix is contains supplementary material for the paper presented

in Chapter 4).

C.1 Tables

Table C.1: Parameter estimates and standard errors from the longitudinal part
of the joint models fitted for the heart data.

R-E T-D I

Intercept Time Intercept Time

Pr(NT)/Pr(T) -1.12(0.07) 0.01(0.16) -1.37(0.27) -0.39(0.38)
Pr(HU)/Pr(T) -1.40(0.02) -0.55(0.31) -1.44(0.21) -0.73(0.57)
Pr(U)/Pr(T) -6.39(0.89) -0.02(0.01) -8.04(3.33) -0.39(0.12)

T-D II T-D III

Intercept Time Intercept Time

Pr(NT)/Pr(T) -1.39(0.29) -0.69(0.37) -0.85(0.25) -0.56(0.29)
Pr(HU)/Pr(T) -1.49(0.17) -0.24(0.62) -1.42(0.18) -0.74(0.35)
Pr(U)/Pr(T) -5.79(1.74) -0.39(0.83) -4.16(0.63) 0.05(0.40)
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Appendix D

This appendix is related to simulation study presented in Chapter 5 (see

Section 5.6.1).

D.1 Simulation Settings

For all simulation scenarios the parameter values that were used for the

longitudinal submodel were

Fixed effects: β1 = 0.93, β2 = −0.6, β3 = 0.63, β4 = 0.42, β5 = 1.1,

β6 = 0.54, β7 = 0.54, and β8 = 0.55;

Random effects diagonal covariance matrix: D11 = 0.49, D22 = 4.52,

D33 = 2.33, and D44 = 1.52;

Measurement error standard deviation: σ = 2.

For the survival submodels the parameters that were used to simulate

from each scenario are given in Table D.1.
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Scenario
I II III IV

γ0 −6.73 −6.73 −6.73 −6.73
γ1 0.41 0.41 0.41 0.41
α1 0.7 0.05 0.08 −0.3
α2 3.3 −0.8
α3 0.3
α4 0.8
σt 1.65 1.65 1.65 1.60

Table D.1: Parameter values for the survival submodels under the four simulation
scenarios.
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