
Summary of the Current Work

My research extends the standard approach of Faucett and Thomas [3] and Wulfson and Tsiatis

[8] in joint modeling in several ways. In particular, I developed a two-stage procedure that can be

used as an alternative to joint modeling approach in case when the longitudinal measurements are

collected before the start of follow-up for survival response [7]. In contrast with the standard joint

modeling setting, the longitudinal responses do not constitute an endogenous time dependent vari-

able measured at the same period as the time to event. Nevertheless, the problem of measurement

error still remains. The proposed two-stage procedure handles the problem of measurement error

via Monte Carlo sampling from the posterior distribution of the random effects. I have applied this

approach for nonlinear longitudinal response and compared the results with the “naive” plug-in

approach when the uncertainty about the estimates from the first step is not taken into account,

as well as with the full Bayesian approach.

In addition I have considered categorical longitudinal responses in the presence of competing risks.

We showed how this problem can be handled using multi-state models techniques. In particular

we used the pseudo-values approach introduced by Andersen et al. [2] and applied it for the

Aalen-Johansen estimator of the state occupation probabilities [9]. To address the problem of

those competing events a multinomial approach was used for the next state given the previous

state observed. This has a great advantage compared to other methods for non-Markov models

where the history of the process is of interest and no standard approaches are available. Moreover

we formulated the problem in the joint modeling framework and proposed a Bayesian model for

joint modeling of categorical longitudinal data and time-to-event response taking into account the

presence of competing risks [8].

In addition for the developed Bayesian joint model I have derived posterior predictive distributions

for the longitudinal and event time outcomes [8]. Additionally, we have also examined the impact

of different parameterizations of the joint model on the obtained predictions. Further we have

compared the joint modeling technique for making dynamic predictions with an older method for

producing such predictions, called landmarking [10]. We showed how survival probabilities are

obtained under each method and what are the differences in the underlying assumptions. The

current work is focused on the functional relationship between the two processes which affects

predictions. To assess the quality of the derived predictions from the two approaches we work on

different measures of discrimination and calibration, suitably adjusted to the context of longitudinal

biomarkers.
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Directions for Future Work

The further work is to consider multiple correlated biomarkers since majority of settings in joint

modeling literature present models only with a single longitudinal outcome and time-to-event. The

separate analysis per longitudinal outcome was shown to be less efficient than a joint analysis

of all the markers simultaneously ([4],[6]). In practice extending the joint model from single to

multiple continuous longitudinal outcome creates similar problems as considering more categories

in a model with a categorical outcome. This leads to highly time- and memory consuming estimation

that often suffers from convergence problems. Therefore, it is clear that we need alternative, less

computationally intensive methods that could be used in real data problems. Such an alternative

could be the conditional score approach proposed by Tsiatis and Davidian [11] and extended by Song

et al. [14] for the multivariate longitudinal data. This method is based on estimating equations and

makes no distributional assumption on the underlying random effects, treating them as “nuisance”.

However, especially for the multivariate longitudinal data, the cognitional score approach reduces

considerably the computational complexity compared to likelihood or Bayesian approaches.

With respect to the survival outcome a multivariate extension is to consider multiple failure times

per subject, such as recurrent event. This type of models require an additional submodel for the

recurrent events, increasing the computational complexity.

The issue of model selection in joint modeling is also under our investigation. Up to now not many

solutions have been proposed. When Bayesian methods are used for the estimation, a DIC or other

Bayesian criteria could be considered. However, due to the well-known limitations of such criteria,

future work could focus on developing more general measures that would allow to choose the best

model based on the quality of the produced predictions in terms of calibration and discrimination,

regardless the estimation method. In particular, discrimination measures that could be applied

in a competing risk setting using joint models are of a special interest. In the context of time-

dependent ROC curves Heagerty et al. [5] proposed several definitions of cases and controls. Saha

and Heagerty [13] and Zheng et al. [16] extended this definition for the competing risks setting.

Depending on the particular setting we could consider different methods of classifying subjects

and use similar sampling procedure as Rizopoulos [15] to estimate ROC in the joint modeling

framework. This extension could be applied to the fully Bayesian model.
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