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Dynamic Prediction

e Use repeated measurements of specific biomarkers to assess risk of death
e Example: CD4 in HIV study

e Dynamic prediction: update of survival probability as more measurements are
available

e \We compare two approaches for producing dynamic predictions of survival
probabilities

e landmarking (van Houwelingen and Putter, 2011)
e joint modeling (Henderson et al.,2002, Yu et al., 2008, Rizopoulos, 2012)



Erasmus M

Joint Modeling Approach

e Joint Modeling Approach:

® reconstructs true evolution of biomarker

e uses the true values of biomarker in survival model
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Joint Modeling Approach

e Two submodels for longitudinal and survival processes
e For continuous longitudinal markers usually a linear mixed model is used:
yi(t) = mi(t) + €(t) = 2l ()8 + 2L ()b; + (1)
m;(t) - true value of the longitudinal marker at time ¢
[ - vector of the fixed-effects parameters
b; ~ N(0, D) -vector of random effects
x;(t) and z;(t) - design matrices for the fixed and random effects

¢;(t) - measurement error, ¢;(t) ~ N(0, 0?)
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Joint Modeling Approach

e For survival process standard relative risk model
Ai(t) = No(t) exp(a! f(t,b;) +~yTvy)

e shares some common (time-dependent) term f(¢,b;), with longitudinal model
v; - vector of baseline covariates, 7y - vector of associated coefficients

- measure the strength of association between longitudinal and survival processes
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Joint Modeling Approach

e Based on fitted model dynamic predictions for new subject & constructed

e \We predict conditional probability of surviving time u > t given that subject £ has
survived up to t:

Sp(u | t) =Pr(T; >u | Ty >t,Yi(t))
Y)(t) - longitudinal profile for subject k at time ¢, T™- true survival time
e Si(u | t) can be written as Bayesian posterior expectation:

Sk(u | t) = /Pr(T/? > | Ty >, Y1), Sp; O)pl(0 | Sn)do (¥)

6 - vector of parameters from joint model, §,, - a sample of size n on which joint
model was fitted
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Joint Modeling Approach

o Let f(b;,1) = b,. First part of the integrant (*) can be written as:
Pr(Ty >u| Ty >t Yt),S;0)
. /Pr(Tk < | Ty > t,04:0) x by | Tf > t,Yil(0), 8) dby

e Monte Carlo approach used to compute Si(u | t) for patient k and Si(u | ')
updated for every time point ¢’ > ¢
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Joint Modeling Approach

e For each individual k given available longitudinal profile Y}.(7):

e Step 1: sample 0, from posterior {b;. | T*(t), Yi(t); 0}



Erasmus MC

Joint Modeling Approach

e For each individual k given available longitudinal profile Y}.(7):
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Landmark Approach

e Landmark method simplifies the longitudinal history Y} (%) to the last value y;.(¢)

e Dynamic predictions obtained by adjusting the risk set and refitting Cox model:

e [andmark time t; chosen
e for ¢; landmark data set L} constructed: selecting individuals at risk at %,
e Cox model fitted for L

e Advantage of JM approach: possibility of defining different association structure
between longitudinal and survival processes
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Motivating Data set

e PBC study
conducted by Mayo Clinic between 1974 and 1984
e For patients with PBC serum bilirubin is known to be a good marker of progression
e Aim: find which characteristics of serum bilirubin profile are most predictive for death

e Longitudinal serum bilirubin level Y;(u) modeled by mixed effects model

e natural cubic splines to account for nonlinear character of marker evolution

e interaction terms between B-spline basis and treatment group to model different
trajectories for 2 treatment groups
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Motivating Data set

e For survival process standard relative risk model with different forms of the
association structure:

| Xi(t) = Mo(t) exp{y"v; + agmy(t)}

I X() = Xo(t) exp{ryT v + ozlmz-(?tf) + apmi(t)}
A (8) = Ao(t) exp {y%ﬁal 0 ml(s)ds}
IV Xi(t) = Xo(t) exp{y vi + o’ b;}.

(1)

Baseline hazard \y(t) modeled parametrically using Weibull distribution, i.e:
Ao(t) = ot
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Different parameterizations of Joint Model

e In J-M where only random effects are shared likelihood is of the (closed!) form:
T T, 1L (Ai=1)
p(irla AZ | bi: 07 B) — [)\O(CT’J eXp<& bZ + 8 UZ>:| X

exp (—fOTi Ao(s)exp(a’ b; + ’yTvi)ds)

> Dependence on s only through piecewise constant baseline hazards \y(s)

e Problem arises when time-dependent term shared:

ST sy exp(e fi(s) ++Tvi)ds

> Solution: use quadrature points to approximate the integral
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PBC Data

e Differences between prediction from joint models |-1V and landmark approach
observed

e Different joint models compared using DIC criterion — best Model | (td-value)
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Simulation Study

e Data simulated data using joint models with different association structure I-IV

e Baseline hazard simulated using Weibull distribution
e Censoring kept at 40-50%

e In each scenario 10 censored pts excluded randomly from each simulated data set

e For remaining patients joint models I-IV fitted

e For excluded patients predictions from joint models |-IV and landmarking compared
at 10 equidistant time points to predictions from gold standard model (model with

true parametrization and true values of parameters)

e Standard landmark model extended: current value+slope (LM2), current value+area

(LM3)
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Discrimination. Calibration

e Compare calibration and discrimination between two approaches in a simulation study
using:

e Expected Prediction Error (Henderson et al 2002) (PE)

e Integrated Prediction Error (Schemper and Henderson 2000) (IPE)

At

e AUC and dynamic concordance index Cj, ,
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Discrimination

e Focus on time interval when the occurence of event is of interest (¢,t + At]

e Based on the model we would like to dicriminate between patients who are going to
exprience the event in that interval from patients who will not

e For the first group physiscian can take action to improve survival during (¢, ¢ + At]
e For ¢ in [0, 1] we define Si.(u | t) < ¢ as success and Si(u | t) > c as failure

e Then sensitivity is defined as:

Pr{Sip(u|t) <cl|Ty e (tt+ At]}

e And specificity as:
Pr{Si(u|t)>c|T;>t+ At}
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Discrimination

e For random pair of subjects 7, § that have measurments up to ¢ discrimination
capability of joint model can be assesed by area under ROC curve (AUC) obtained by
varying c:

AUC(t, At) = Pr[Si(u | £) < Sj(u | t) | {T7 € (t,t + At]} U{T; > t + At}]

e Model will assign higher probability of surviving longer that ¢t + At for subject 5 who
did not experience event

e To summarize model discrimination power weigthed average of AUCs used:

Cﬁ;n = /AUC(t,At}Pr{S(t)}dt//Pr{E(t)}dt (dynamic concordance index)
0 0

E(t)={T; € (t,t + At} U{T} >t + At}
Pr{&(t)}-probability that pair {i, j} comparable at ¢
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o Cf;n depends on At

e In practice:
15

S w, AUC(t,, At) x Pr{&(t,)}
~ At g=1
Cdyn —

15

Z:lqur{S(tq)}

=

wq-weights for 15 Gauss-Kronrod quadrature points on (0, ¢,,42)
Pr{&(t,)} = {S(ty) — Sty + At)}S(t, + At)

3( )-Kaplan-Meier estimator of marginal survival function S(-)
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Discrimination

e AUC is estimated as:

S5 ISt + AL 1) < Si(t+ AL | )} x T{Q4(0)}
AUC(t,, At) = =17

n n

e Comparable pairs are those that satisfy:
Qii(t)=|{T; € (t,t + At]}n{d; =1} N{T; >t + At} or

Qui(t) = [{T: € (t,t + Aty N {6 = B N[{T; =t + At} N {5; = 0}]
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Calibration

e Expected Prediction Error (Henderson et al 2002):
PE(u | t) = E[L{Nj(u) — Si(u | )}]
Ni(u) = I(TF > u)

L(-)-loss function (absolute or square loss)

PE(u|t)={R(t)} Z (T > uw)L{1 — S(u | )} + 6:1(T; < u)L{0 — S(u | )}

+(1 = 8T < w)[Si(u | T)L{L = S(u | )} + {1 = S(u | T)}L{0 — S(u | )}]

R(t)-number of subjects at risk at ¢
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Calibration

e PE(u | t) measures predictive accuracy only at u using longitudinal information up
to time ¢

e To summarize predictive accuracy for interval [t, u| and take into account censoring
: : . ~ At
weighted average of PE(s | t), t < s < u considered, similar to C;

e Integrated Prediction Error (Schemper and Henderson 2000):
> i{Sc(t)/Sc(T)}PE(u | t)

u<Ti<t

> §i{Sc(t)/Sc(Th)}

u<Ti<t

[PE(u|t) =

Sc(+)- Kaplan-Meier estimator of censoring distribution



PE(9]7) IPE(9]7) AUC(9]7) C,,,,

JMi: value 0.201 0.118 0.787  0.854
JMy: value+slope 0.197  0.114 0.793  0.855
JMs: area 0.191 0.112 0.758  0.809
JM,: shared RE ~ 0.191  0.108 0.807  0.840

Coxz s 0.229  0.130 0.702 0.811

e Results for PBC data set will indicate different best model than DIC
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Extensions

e Different types of longitudinal outcome (binary, categorical)
e Multiple longitudinal outcomes

e Multiple event times (Competing risk setting)
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Motivating Data Set 2 : Heart Data

e Data from Eurotransplant Heart recipient waiting list (2921 recipients)

e During follow-up patients are evaluated as:
> Transplantable (T)
> Urgent (U)
> High-Urgent (HU)
> Non-Transplantable (NT)

e Patient is excluded from the list when:

> Death (D)
> Transplanted (TT)

> Removed (from other reasons than transplantation) (R)
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Heart Data cont.

e Different evaluation points
> First evaluation time point at the moment of entering on the waiting list (time 0)

> Next evaluation time points depend on the previous state

e At baseline (time 0) patient characteristics available:
> age
> country : 7 centers categorized in |Consent and Non-IConsent

> blood group (A, B, AB, 0)
e Aim: predict patient’s urgency status and asses risk of D/R/TT

using available history & adjusting for baseline covariates
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Joint Modeling Approach

e Modeling transient states : U, HU, T and NT as categorical longitudinal response
e Modeling the risk of final events: R, D or TT

e Categorical response cannot be ordered (due to NT state)

e Competing risks (D, TT,R)

e Similar procedure as above to update conditional CIF dynamically
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Joint Model (J-M). Submodels specification

e Longitudinal submodel:
multinomial logit mixed model to model probabilities of states s = U, HU,T', NT
logit(P(Yi(t) = s,)) = o ()a, + 21 ()bj,, r=1,2,...,R—1, 1=1,2,...N
bl = (b, 0L, ... bL), by ~ N(0,%,)

x;(t) -vector of covariates

2i(t) - design vector for random effects
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Joint Model. Submodels specification

o Let 17,15, ...,1 - true failure times for individual ¢
e We observe only T; = min(773, 15, ..., T, C;), C; -censoring time, A; -failure ind.

e Relative risk submodel for each cause of failure &:

Nie() =lm Pt <Tr <t+s, N =k|T}>1t)/s=

s—0

=Xor(t)exp(~/ b+ Biv), k=1,..., K, b = (b, 0L, ...,00)
- baseline covariates
> sharing all random effects b; with multinomial logit model
> cause-specific baseline hazards \;(f) modeled as piecewise constant function

> -y - measure of strength of association between longitudinal and survival processes
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Extensions

e Landmark approach can be also extended using causes-specific hazards
e Fine-Gray type approach combined with landmarking(Cortese and Andersen (2010))

e Pseudo-values approach
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Final Comments/Current Work

e In context of time-dependent ROC curves Heagerty et al.(2005) proposed several
definitions of cases and controls

e Saha and Heagerty (2010) and Zheng et al. (2012) extended definition for competing
risks setting

e Explore different methods of classifying subjects and use similar sampling procedure
to estimate ROC in joint modeling framework

e This extension could be applied to fully Bayesian model for competing risks presented
above

e Joint models for continuous longitudinal outcome implemented in JM and JMBayes

e Landmark approach : dynpred
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Scenario

I | 1l IV

Yo —6.73 —6.73 —6.73 —6.73
v, 041 041 041 041

oy 0.7 005 0.08 —-0.3
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4 0.8

o 165 165 165 1.60




