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Abstract

In transplantation studies often longitudinal measurements are collected

for important markers prior to the actual transplantation. Using only the last

available measurement as a baseline covariate in a survival model for the time

to graft failure discards the whole longitudinal evolution. We propose a two-

stage approach to handle this type of data sets using all available information.

At the first stage we summarize the longitudinal information with nonlinear

mixed-effects model, and at the second stage we include the Empirical Bayes

estimates of the subject-specific parameters as predictors in the Cox model for

the time to allograft failure. To take into account that the estimated subject-

specific parameters are included in the model, we use a Monte Carlo approach

and sample from the posterior distribution of the random effects given the
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observed data. Our proposal is exemplified on a study of the impact of renal

resistance evolution on the graft survival.

Keywords: Measurement Error Correction, Monte Carlo Sampling, Nonlinear Mixed Mod-

els, Survival Data

1. Introduction

Many medical studies involve analyzing responses together with event history data

collected for each patient. A well-known and broadly studied example can be found

in AIDS research, where CD4 cell counts taken at different time points are related to

the time to death. These data need to be analyzed using a joint modeling approach in

order to properly take into account the association between the longitudinal data and

the event times. The requirement for a joint modeling approach is twofold. Namely,

when focus is on the longitudinal outcome, events cause nonrandom dropout that

needs to be accounted for in order to obtain valid inferences. When focus is on the

event times, the longitudinal responses cannot be simply included in a relative risk

model because they represent the output of an internal time-dependent covariate[1].

In this paper, we focus on a setting that shares some similarities with the stan-

dard joint modeling framework described above, but also has important differences.

In particular, we are interested in the association between longitudinal responses

taken before the actual follow-up for the time-to-event has been initiated. This

setting is frequently encountered in transplantation studies, where patients in the

waiting list provide a series of longitudinal outcomes that may be related to events

occurring after transplantation. A standard analysis in transplantation studies is

to ignore the longitudinal information and use only the last available measurement

as a baseline covariate in a model for the allograft survival. It is however evident

that such an approach discards valuable information. An alternative straightfor-

ward approach is to put all longitudinal measurements as covariates in the survival
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model. Nevertheless, there are several disadvantages with this approach. First, it

would require spending many additional degrees of freedom, one for each of the

longitudinal measurements. Second, patients with at least one missing longitudinal

response need to be discarded, resulting in a great loss of efficiency. Finally, we may

encounter multicollinearity problems due to the possibly high correlation between

the longitudinal measurements at different time points.

Nowadays, when it comes to measuring the association between a longitudinal

marker and an event-time outcome, a standard approach is to use the joint model

postulated by Faucett and Thomas [2] and Wulfsohn and Tsiatis [3]. In this set-

ting the longitudinal responses are considered realizations of an endogenous time-

dependent covariate (Kabfleish and Prentice [1]), which is measured with error and

for which we do not have the complete history of past values available. To account

for these features we estimate in the joint modeling framework the joint distribu-

tion of the survival and longitudinal processes. Unlike in the multivariate approach,

where we have to interpret the estimates for each longitudinal measurement sep-

arately, the joint modeling approach allows to get more insight in the nature of

the relation between the two analyzed processes since it assumes some underlying

process for the longitudinal measures.

However in contrast with the standard joint modeling setting, in our case (i.e.,

transplantation studies) the longitudinal responses do not constitute an endogenous

time dependent variable measured at the same period as the time to event. In

particular, since the longitudinal measurements are collected prior to transplanta-

tion, occurrence of an event (i.e. graft failure after transplantation) does not cause

nonrandom dropout in the longitudinal outcome. Nevertheless, the problem of mea-

surement error still remains. Ignoring the measurement error affects not only the

standard errors of the estimates of interest but also it can causes attenuation of

the coefficients towards zero [4]. To overcome this we propose a two-stage model-

ing approach that appropriately summarizes the longitudinal information before the
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start of follow-up by means of a mixed effects model and then uses this informa-

tion to model the time to event by including the Empirical Bayes estimates of the

subject specific parameters as predictors in the Cox model. To account for the fact

that we include the estimates and not the true values of the parameters, we use a

Monte Carlo approach and sample from the posterior distribution of the random

effects. The proposed method does not require joint maximization neither fitting

the random effects model for each event time as in the two-stage approach of Tsiatis,

DeGrutola and Wulfsohn [5]. We compare this approach with the “naive” one when

the uncertainty about the estimates from the first step is not taken into account,

as well as with the full Bayesian approach. Our approach shares similarities with

the two-stage approach of Albert and Shih [6]. They considered a model, in which

a discrete event time distribution is modeled as a linear function of the random

slope of the longitudinal process estimated from the linear mixed model. The bias

from informative dropout was reduced by using the conditional distribution of the

longitudinal process given the dropout time to construct the complete data set. To

account for the measurement error in the mean of the posterior distribution of the

random effects, the variance, that incorporates the error in estimating the fixed ef-

fects in the longitudinal model, was used. However we use sampling not to impute

missing values and correct for non-random dropout but in order to account for the

variability in the predicted longitudinal covariates that are then used in survival

model. A method of adjusting for measurement error in covariates, that was used

by Albert and Shih, does not apply in our case since it requires the discrete time-to-

event and linear model for longitudinal data. The time-to-event could be discretized

but still we have a nonlinear model for longitudinal data.

Our research is motivated by data from an international prospective trial on

kidney-transplant patients. The study has two arms, where in the first arm donors’

kidneys were administered to cold storage, whereas in the second arm they were

administered to machine perfusion (MP). The advantage of machine perfusion is
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the possibility of measuring different kidney’s parameters reflecting the state of the

organ. One of the parameters of interest is renal resistance level (RR), which has

been measured at 10 minutes, 30 minutes, 1 hour, 2 hours, 4 hours and just before

transplantation. Our aim here is to study the association of the renal resistance

evolution profile with the risk of graft failure. The time of last measurement was

different for different patients and often unknown exactly. However based on the

medical consult and visual inspection of the individual profiles the last measurement

was chosen to be taken at 6 hours for each patient.

The rest of the paper is organized as follows. Section 2 provides the general

modeling framework with the definition of the two submodels for the longitudinal

and survival data, respectively. Section 3 describes the estimation methods for the

full likelihood and the proposed two-stage approach. In Section 4 we apply the two-

stage approach to the renal data. Section 5 contains the setup and the results for

the simulation study. Finally, in Section 6 we discuss the proposed methodology.

2. Joint Modeling Framework

Let Yi(u) denote the longitudinal profiles for individual i, i = 1, 2, . . . , N . We as-

sume that Yi(u) are collected for the ith individual prior to the specified time ti,

u ∈ (0, ti). Let t = 0 denote the time of the first longitudinal measurement and ti

- the time of the last collected measurement. ti can be different for different indi-

viduals and we denote by mi the number of longitudinal measurements for subject

i collected until time ti and by uij the time of jth measurement. Denote by T ∗i ≥ ti

the true survival time for individual i. Since the survival time is right censored

we observe only Ti = min(T ∗i , Ci), where Ci ≥ ti is the censoring time with the

failure indicator ∆i, which equals to 1 if the failure is observed and 0 otherwise, i.e.

∆i = I(Ti ≤ Ci) with I(·) denoting the indicator function. We will assume that

censoring is independent of all other survival and covariate information. In addition
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we assume that the observed longitudinal responses Yi(u) are measured with error

(i.e. biological variation) around the true longitudinal profile Wi(u), i.e.,

Yi(u) = Wi(u) + εi(u),with εi(u) ∼ N(0, σ2) and cov(εi(u), εi(u
′)) = 0, u′ 6= u. (1)

We will consider the longitudinal response that exhibit a nonlinear profiles in time.

Therefore, we approximate Wi(u) by means of a nonlinear mixed effects model:

Wi(u) = f(u;φi),with φi = Xiβ +Ziαi, (2)

where f(·) is a nonlinear function, parameterized by the vector φi. The parameters

φi control the shape of the nonlinear function and subscript i denotes that each

subject may have its own nonlinear evolution in time in the family f(·;φ). For the

subject-specific parameter φi we assume a standard mixed model structure with Xi

denoting the fixed effects design matrix with corresponding regression coefficients

β, Zi the random effects design matrix and αi the random effects. The random

effects αi are assumed to be independent and normally distributed with mean zero

and variance-covariance matrix D.

For the event process we postulate the standard relative risk model of the form:

λi(t) = λ0(t) exp(γTφi), (3)

where λi(t) is the hazard function, λ0(t) is the baseline hazard, which can be mod-

eled parametrically or left completely unspecified. The subject specific parame-

ters φi summarize the longitudinal evolutions of the response for each subject, and

therefore coefficients γ measure the strength of the association between the dif-

ferent characteristics of the underlying subject-specific nonlinear evolution of the

longitudinal profiles and the risk for an event. Within the formulation of the two

submodels (2) and (3) the same random effects now account for both the associa-

tion between the longitudinal and event outcomes, and the correlation between the
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repeated measurements in the longitudinal process.

In the particular transplantation setting that will be analyzed in the following

study Yi(u) are the renal resistance level measurements collected for the ith donor

prior to the transplantation time ti and the same index i is used to denote the

allograft transplanted to the ith patient. Time t = 0 represents the time that the

kidney is removed from the donor and put in cold storage or in a perfusion machine.

3. Estimation

3.1. Full likelihood framework: Bayesian approach

In the standard joint modeling framework the estimation is typically based on max-

imum likelihood or Bayesian methods (MCMC). This proceeds under the following

set of conditional independence assumptions:

p(Ti,∆i,Yi | αi;θ) = p(Ti,∆i | αi;θt)p(Yi | αi;θy)

p(Yi | αi;θy) =
mi∏
j=1

p(Yi(uij) | αi;θy). (4)

In particular, we assume that given the random effects the longitudinal process is

independent from the event times, and moreover, the longitudinal measurements are

independent from each other.

Maximum likelihood methods use the joint likelihood and maximize the log-

likelihood function li(θ) =
∑
i

log p(Ti,∆i,Yi;θ). This requires numerical integra-

tion and optimization, which makes the fit difficult, especially in high-dimensional

random effects settings. Standard options for numerical integration are Gaussian

quadrature, Laplace approximation or Monte Carlo sampling ([7],[8]). Maximiza-

tion of the approximated log-likelihood is based on an EM algorithm ([3], [9], [10],

[5], [11]). Several authors proposed a Bayesian approach (MCMC)([2], [12], [13]).

Bayesian estimation, that generalizes a joint model for the case with multivariate
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longitudinal data, has been discussed by Ibrahim Chen and Sinha [14]. Brown and

Ibrahim [15] considered semiparametric model relaxing the distributional assump-

tion for the random effects. In most papers the longitudinal submodel is a linear

mixed effectx model. Joint models with nonlinear mixed-effects submodels have

been less studied in the literature [16]. Nonlinear mixed models are more com-

mon in pharmacokinetics and pharmacodynamics, where they are jointly modeled

with non-random dropout using NONMEM software. Several authors considered a

Bayesian approach with a nonlinear mixed model and informative missingness ([17],

[18]).

Here we will proceed under the Bayesian paradigm to estimate the model param-

eter. Under the conditional independence assumption (4) the posterior distribution

of the parameters and the latent terms, conditional on the observed data, are derived

as:

p(θ,αi | Ti; ∆i;Yi) ∝
N∏
i=1

mi∏
j=1

{p(Yi(uij) | αi;θy)} p(Ti,∆i | αi;θt)

p(αi;θα)p(θy,θt,θα),

(5)

where θT = (θTy ,θ
T
t ,θ

T
α ) is a vector of parameters from the longitudinal and survival

models and the vector of the random effects, respectively and p(· ) denotes the

appropriate probability density function. The likelihood contribution for the ith

subject conditionally on the random terms is given by:

p(Yi, Ti,∆i | αi;θ) = p(Yi | αi;θy)p(Ti,∆i | αi;θt)

=
[
λ0(Ti) exp{γTφi(αi)}

]∆i
exp

− Ti∫
0

λ0(t) exp{γTφi(αi)}dt


1

(2πσ2)mi/2
exp

[
−

mi∑
j=1

{Wi(uij,αi)− Yi(uij)}2

2σ2

]
.

(6)
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The baseline hazard can be assumed of a specific parametric form, e.g. the Weibull

hazard. For the priors of the model parameters we make standard assumptions

following Ibrahim et al. [14]. In particular, for the regression coefficients β of

the longitudinal submodel and for the coefficients γ of survival submodel we used

multivariate normal priors. For variance-covariance matrices we assumed an inverse

Wishart distribution and for the variance-covariance parameters we took as a prior

an inverse-gamma. For all parameters the vague priors have been chosen.

The implementation of the Cox and piecewise constant hazard models is typically

based on the counting process notation introduced by Andersen and Gill [19] and

formulated by Clayton [20]. In particular we treat the counting process increments

dNi(t) in the time interval [t, t+ ∆t] as independent Poisson random variables with

means Λi(t)dt:

Λi(t)dt = ωi(t) exp(γTφi)dΛ0(t), (7)

where ωi(t) is an observed process taking the value 1 if subject i is observed at

time t and 0 otherwise, dΛ0(t) is the increment in the integrated baseline hazard

function occurring during the time interval [t, t+ ∆t]. Since the conjugate prior for

the Poisson mean is the gamma distribution, we assume the conjugate independent

increments prior suggested by Kalbfleisch [21], namely:

dΛ0(t) ∼ Gamma(c ∗ dΛ∗0(t), c), (8)

where dΛ∗0(t) is a prior mean hazard with c being a scaling parameter representing

the “strength” of our prior beliefs. The gamma prior was also chosen for the baseline

risk parameter of the Weibull distribution in parametric survival model. Alterna-

tively to implement the Cox model in a fully Bayesian approach one may use the

“multinomial-Poisson trick” described in the OpenBUGS manual that is equivalent

to assuming independent increments in the cumulative hazard function. The in-

crements are treated as failure times and noninformative priors are given for their
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logarithms. Analogically to the Cox model a piecewise constant hazard model was

implemented. We have modeled baseline hazard using a step function with 3 quan-

tiles t1, t2 and t3 as changing points assuring the same number of events in-between.

Let t0 denote the start of the follow up, t4 the maximum censoring time and dΛ0k(t)

the increment in the integrated baseline hazard function occurring during the time

interval [tk, tk+1], k = 0, 1, 2, 3. Then for different intervals we specify a separate

prior hazard mean dΛ∗0(t) and:

dΛ0k(t) ∼ Gamma(c ∗ dΛ∗0k(t), c). (9)

Similarly as for the Cox model the results were not sensitive with respect to the

choice of the hyperparameters as long as the priors were sufficiently diffuse. The

above nonparametric approach can be criticized as having the independent priors

for the hazard distribution. However as suggested by Kalbfleisch [21] a mixture

of gammma priors can be considered as an alternative. Moreover in a piecewise

constant model one can also include change points as unknown parameters in the

model as proposed in a Bayesian context by Patra and Dey [22] and applied by

Cassellas [23].

In order to assess convergence for the full Bayesian model standard MCMC

diagnostic plots were used. The burn-in size was set to 10000 iterations, which

was chosen based on the visual inspection of the trace plots, and confirmed by the

the Raftery and Lewis diagnostics. The same number of iterations were used for

constructing the summary statistics. Based on the autocorrelation plots we have

chosen every 30th iteration. Therefore in total to obtain 10000 iterations for the

final inference 300000 iterations were required after the burn-in part. Additionally

we run a second parallel chain and used Gelman and Rubin diagnostic plots to asses

the convergence.
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3.2. Two-Stage approach

As mentioned in Section 1, the longitudinal measurements in our setting do not

constitute an internal time-dependent covariate, since the events took place after

the last longitudinal measurement was collected. In particular, since events do not

cause nonrandom dropout, the event process does not carry any information for the

longitudinal outcome. Mathematically this means that information for the random

effects αi is actually only coming from the longitudinal responses, that is:

p(αi | Yi(uij);Ti; ∆i;θy) = p(αi | Yi(uij);θy) (10)

Thus, we can avoid the computational complexity of the full likelihood framework

presented in Section 3.1 by employing a two-stage approach. More specifically: At

Stage I: we obtain θ̂y by maximizing the log-likelihood:

ly(θy) =
N∑
i=1

∫
p(Yi | αi;θy)p(αi;θy)dαi

This requires numerical integration and we use a Gaussian quadrature for that pur-

pose. Then we obtain the corresponding empirical Bayes estimates:

α̂i = arg max
α

[
log p(Yi | α; θ̂y) + log p(α; θ̂y)

]
and compute the predictions:

φ̂i = Xβ̂ +Ziα̂i.

At Stage II we fit the relative risk model:

λi(t) = λ0(t) exp
(
γT φ̂i

)
.

However, a potential problem in the above is that φ̂i is not the true subject-specific

parameters but rather an estimate with a standard error. If we ignore this measure-

ment error, the regression coefficients γi will be possibly attenuated. To overcome
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this problem we propose here a sampling approach to account for the variability in

φ̂i, very close in spirit to the Bayesian approach of Section 3.1. In particular, we

use the following sampling scheme:

Step 1: simulate θ
(m)
y ∼ N(θ̂y, vâr(θ̂y))

Step 2: simulate α
(m)
i ∼

[
αi | Yi,θ

(m)
y

]
Step 3: calculate φ

(m)
i = Xβ(m) +Ziα

(m)
i and fit the relative risk model

λi(t) = λ0(t) exp{γTφ(m)
i } from which θ̂

(m)
t = γ̂(m) and vâr(θ̂

(m)
t ) are kept.

Steps 1-3 are repeated m = 1, . . . ,M times.

Step 1 takes into account the variability of the MLEs, and Step 2- the variability of

αi. Moreover, because the distribution in Step 2 is not of a standard form, we use

a independence Metropolis-Hastings algorithm to sample from it with multivariate

t-proposal density centered at an Empirical Bayes estimates α̂i, covariance matrix

vâr(α̂i) and df=4. The low number of degrees of freedom was chosen to ensure

that the proposal density has heavy tails to provide sufficient coverage of the target

density [αi | Yi,θy]. The variance-covariance matrix estimated from the nonlinear

mixed model was additionally scaled by some parameter Scale. The tuning pa-

rameter allows to control the acceptance rate through the range of the proposed

distribution. If the range is too narrow, the proposed values will be close to the

current ones leading to low rejection rate. On the contrary if the range is too large,

the proposed values are far away from the current ones leading to high rejection

rate. We chose the acceptance rate to be 0.5 following Carlin [24] that suggests

a desirable acceptance rates of Metropolis-Hastings algorithms to be around 1/4

for the dependence (random walk) M-H version and 1/2 for the independent M-H.

Roberts et al.[25] recommended to use the acceptance rate close to 1/4 for high di-

mensions and 1/2 for the models with dimensions 1 or 2. They discussed this issue

in the context of the random walk proposal density. The authors showed that if
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the target and proposal densities are normal, then the scale of the latter should be

tuned so that the acceptance rate is approximately 0.45 in one-dimensional problems

and approximately 0.23 as the number of dimensions approaches infinity, with the

optimal acceptance rate being around 0.25 in as low as six dimensions. In our case

an independence version of Metropolis-Hastings algorithm is applied. The proposal

density in the algorithm does not depend on the current point as in the random-walk

Metropolis algorithm. Therefore for this sampler to work well, we want to have a

proposal density that mimics the target distribution and have the acceptance rate

be as high as possible. In order to obtain a desirable acceptance rate one needs

to run a sampling algorithm for a number of iterations for a given data set and

compute an acceptance rate and then repeat the procedure changing the tuning

parameter until the chosen acceptance rate is obtained. Usually a small number of

iterations (100-500) is sufficient for the purpose of calibration. More details about

the Metropolis-Hastings acceptance-rejection procedure can be found in the supple-

mentary material. A final estimate of θt is obtained using the mean of the estimates

from all M iterations:

¯̂
θt =

M∑
m=1

θ̂mt

/
M. (11)

To obtain the SE of ¯̂θt we use the variance-covariance matrix V :

V̂ = Ŵ + (M + 1)B̂
/
M, (12)

where Ŵ is the average within-iteration variance and B̂ is the between-iteration

variance, i.e.,

Ŵ =
M∑
m=1

Ûm
/
M,

and

B̂ =
1

M − 1

M∑
m=1

(θ̂mt −
¯̂
θt)(θ̂

m
t −

¯̂
θt)

T (13)

Ûm represents a variance-covariance matrix estimated in iteration m for γ̂m.
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4. Analysis of the RR Data

4.1. Models’ specification.

We apply the proposed two-stage procedure and a fully Bayesian approach to the

transplantation study introduced in Section 1. The data was taken from an inter-

national prospective trial on 337 kidney pairs, that aimed to compare two different

types of storage, namely cold storage and machine perfusion (MP). Here we focus

on the second arm. Our main outcome of interest is graft survival time censored

after 1 year. At the end of the study only 26 graft failures were observed. The renal

resistance level (RR) was expected to be an important risk factor for graft failure.

It was measured using the perfusion machine at the moment of taking the organ out

from a donor (t = 0), and thereafter at 10 minutes, 30 minutes, 1 hour, 2 hours,

4 hours and just before transplantation. As mentioned in the Section 1, the time

of last measurement was different for different patients and sometimes unknown.

However there was a clear asymptote visible from the individual profiles that was

reached after about 5 hours by each patient. Based on that behavior and after

the medical consult we chose the last measurement to be taken at 6 hours for each

patient. Other variables of interest include the age of the donor, donor’s region (3

countries considered) and donor’s type (heart-beating or non-heart-beating).

The individual profiles of 50 randomly selected kidney donors are presented in

Figure 1. This plot confirms the biological expectation that allografts exhibit their

highest renal resistance levels just after being extracted from the donor. Thereafter

they show a smooth decrease in RR until they reach an asymptote above zero indi-

cation that there is no “perfect flow” through the kidney. Furthermore, we observe

that the initial RR level, the rate of decrease as well as the final RR level differ

from donor to donor. Additional descriptive plots for our data are presented in the

supplementary material.

In the first step of our analysis we aim to describe the evolution of the renal
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Fig. 1: Individual profiles of renal resistance level for 50 sampled donors

resistance level in time. Motivated by both biological expectation and Figure 1 we

postulate the following nonlinear function:

f(t) = φ1 + φ2e
−φ3t, (14)

where φ1 is a lower asymptote, φ1 + φ2 is an initial value for t=0, and φ3 is the rate

of decrease from φ2 to φ1 (see also Figure 2 in Supplementary material).

To accommodate for the shapes of RR evolutions observed in Figure 1, we need

to constraint φ1, φ2 and φ3 to be positive. Moreover, in order to allow for individual

donor effects, we use the following formulation:
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Yi(t) = Wi(t) + ε(t),with

Wi(t) = fi(t) = exp(φ1i) + exp(φ2i)e
− exp(φ3i)t,

where

φ1 = β10 + β11DonorAge+ β12DonorType+ β13DonorReg1 + β14DonorReg2 + α1

φ2 = β20 + β21DonorAge+ β22DonorType+ β23DonorReg1 + β24DonorReg2 + α2

φ3 = β30 + β31DonorAge+ β32DonorType+ β33DonorReg1 + β34DonorReg2 + α3,

and αi ∼ N(0, D), ε(t) ∼ N(0, σ2) with α = (α1, α2, α3) and cov(αi, ε(t)) = 0. In

the second step the predicted parameters (φ1, φ2, φ3 ) summarizing the RR evolution

of the nonlinear mixed model are included in the graft survival model. The final

model for graft survival was of the form:

λi(u) = λ0(u) exp
(
γ1φ̂1i + γ2φ̂2i + γ3φ̂3i

)
.

To investigate the impact of ignoring that the covariate φ̂i is measured with error,

we compared the naive approach in which we ignored this measurement error and

our proposal that accounts for the uncertainty in φ̂i via Monte Carlo sampling. We

used Metropolis-Hastings algorithm with independent t-proposal and acceptance

rate around 50% for the reason given in Section 3.2. We simulated M = 10000

samples with additional initial step of the scaling parameter calibration in order to

achieve the desirable acceptance rate. The final estimates (and SE) of the parame-

ters associated with RR covariates were calculated using the formulas described in

the Section 2.3. We compared the results from the two-stage procedure with the

estimates obtained from the fully Bayesian joint model fitted for the data using the

priors specified in Section 3.1.

The analysis was performed using R Statistical Software. Packages survival and

nlme were used for the two submodels fit and a separate code was written by the
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first author for the sampling part. The fully Bayesian model was fitted using Open-

BUGS software with the priors specified in Section 3.1. In particular, for the p× p

variance-covariance matrices of multivariate normal priors we used inverse Wishart

distribution with p degrees of freedom. For the variance-covariance parameter of

the normal longitudinal response we took as a prior an inverse-Gamma(10−3,10−3).

For the baseline risk parameter of the Weibull distribution in survival submodel a

Gamma(10−3,10−3) prior was used. To analyze the data using the fully Bayesian Cox

model described in Section 3.1 we chose the scaling parameter c in a gamma prior

for the independent increments to be equal 0.001 and a prior mean dΛ∗0(t) = 0.1. We

did not observe any substantial difference for the different values of parameter c as

long as c was small enough to keep the prior noninformative. We do not recommend

too small values of the scaling parameter c as they can lead to the computation

problems. Analogically we have chosen gamma priors for the piecewise constant

hazard model. The code for the Bayesian full joint model as well as the R codes for

the sampling two-stage procedure are available from the authors on request.

4.2. Results

The results for the nonlinear mixed model are presented in Table 1, for the two-stage

approach and in supplementary material, for the full Bayesian approach with Weibull

survival model. The results for the longitudinal part for the full Bayesian approach

with Cox and piecewise constant hazard models were similar (not presented). It can

be observed, based on the the two-stage model results, that only Donor Age had a

significant impact on the RR asymptote. Donor Type and Region had a significant

impact on the steepness parameter. However we keep all the covariates in the model

for the purpose of prediction for the second stage. The mean RR profiles for Heart-

Beating and Non-Heart-Beating donors from different regions together with fitted

values based on the obtained nonlinear mixed model are given in Supplement.

In the second step of the analysis we applied at first the naive approach and used
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Table 1: Parameter estimates, standard errors and 95 % confidence intervals from the

non-linear mixed model for RR

Effect Parameter Estimate SE (95%CI)

Fixed effects

φ1

Constant β10 2.838 0.094 (2.654; 3.022)

Donor Age β11 0.005 0.002 (0.001; 0.009)

Donor Type (HB vs NHB) β12 -0.102 0.068 (-0.235; 0.031)

Donor Region 1 vs 3 β13 -0.078 0.065 (-0.205; 0.049)

Donor Region 2 vs 3 β14 -0.072 0.072 (-0.213; 0.069)

φ2

Constant β20 3.510 0.211 (3.096; 3.924)

Donor Age β21 0.004 0.004 (-0.004; 0.012)

Donor Type (HB vs NHB) β22 -0.064 0.154 (-0.365; 0.238)

Donor Region 1 vs 3 β23 -0.107 0.147 (-0.395; 0.181)

Donor Region 2 vs 3 β24 0.033 0.163 (-0.286; 0.352)

φ3

Constant β30 1.010 0.186 (0.645; 1.375)

Donor Age β31 0.003 0.003 (-0.003; 0.009)

Donor Type (HB vs NHB) β32 0.402 0.130 (0.147; 0.657)

Donor Region 1 vs 3 β33 -0.284 0.125 (-0.529; -0.039)

Donor Region 2 vs 3 β34 -0.032 0.138 (-0.302; 0.238)

Random effects

se(α1) d11 0.396

se(α2) d22 0.955

se(α3) d33 0.572

cov(α1, α2) d12 0.257

cov(α1, α3) d13 -0.053

cov(α2, α3) d23 0.023

se(εij) σ 7.507
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the estimates φ̂1, φ̂2 and φ̂3 from the nonlinear mixed model as fixed covariates in

the final Cox models for graft survival. Table 2 presents the results for the survival

submodel for the all approaches, namely the plug-in method, two-stage approach

and the fully Bayesian model. For the fully Bayesian approach the results for the

parametric Weibull model together with Cox and piecewise constant hazard models

are listed. The results from Table 2 indicate that only the RR asymptote could have

a significant impact on graft survival.

We observe that the estimates are close or almost identical as in plug-in model.

SE of the Cox regression coefficients for the model with sampling are greater than

SE from the plug-in model in Table 2 (a), especially for the parameter φ3. The

increase in SE is somewhat the expected and is caused by the additional variability

in covariates captured by the sampling approach. The fully Bayesian model produces

similar results to our semi-Bayesian sampling model with somewhat lower SE. We

do not observe substantial difference between fully parametric and nonparametric

models in a fully Bayesian approach. Since in the analyzed real data the number

of events is small the fully Bayesian Cox and piecewise constant hazard Bayesian

models were expected to produce similar results. We did not observe any substantial

difference for the different values of hyper parameters.

Even though it is hard to compare exactly the computational time for the two

approaches, the rough estimation of the total computational time needed to estimate

and assess the convergence (2 chains) of the full Bayesian model was about 21.6 hours

and depended on the implemented survival model. A similar computational time

was needed for the full Bayesian model with the Cox survival model and piecewise

constant hazard model with a slightly more time needed for the parametric Weibull

model. For the two-stage approach the total computational time was about 10 hours

using the Intel(R) Core(TM)2 Duo T9300 2.5 GHz and 3.5 GB RAM.
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Table 2: Parameter estimates, SE and 95 % confidence/credibility intervals from propor-

tional hazards Cox model for graft survival for plug-in method (a), sampled covariates

(b) and fully Bayesian approach (c, d, e)

(a)

Graft Survival - Plug-in

Effect Parameter log(HR) SE (95%CI)

exp(φ1) γ1 0.052 0.022 (0.009; 0.095)

exp(φ2) γ2 -0.005 0.005 (-0.015; 0.005)

exp(φ3) γ3 0.053 0.158 (-0.257; 0.363)

(b)

Graft Survival - Sampling Two-Stage

Effect Parameter log(HR) SE (95%CI)

exp(φ1) γ1 0.053 0.024 (0.006; 0.100)

exp(φ2) γ2 −0.006 0.008 (-0.022; 0.010)

exp(φ3) γ3 0.055 0.185 (-0.308; 0.418)

(c)

Graft Survival - Fully Bayesian - Weibull

Effect Parameter log(HR) SE (95%HPD)

exp(φ1) γ1 0.058 0.023 (0.013; 0.103)

exp(φ2) γ2 −0.005 0.008 (-0.020; 0.011)

exp(φ3) γ3 0.056 0.180 (-0.299; 0.411)

(d)

Graft Survival - Fully Bayesian - Cox

Effect Parameter log(HR) SE (95%HPD)

exp(φ1) γ1 0.056 0.023 (0.010; 0.101)

exp(φ2) γ2 −0.006 0.008 (-0.022; 0.010)

exp(φ3) γ3 0.055 0.171 (-0.280; 0.390)

(e)

Graft Survival - Fully Bayesian - Piecewise constant hazard

Effect Parameter log(HR) SE (95%HPD)

exp(φ1) γ1 0.054 0.024 (0.007; 0.102)

exp(φ2) γ2 −0.005 0.009 (-0.022; 0.012)

exp(φ3) γ3 0.054 0.179 (-0.297; 0.405)
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5. Simulations

5.1. Design

We have conducted a number of simulations to investigate the performance of our

proposed two-stage method. In particular, we compared the plug-in method which

uses the Empirical Bayes estimates φ̂i from the nonlinear mixed model and ignores

the measurement error, the two-stage Monte Carlo sampling approach that accounts

for the variability in φ̂i and the fully Bayesian approach. In the fully Bayesian

approach only the parametric Weibull model was considered.

For the longitudinal part the data were simulated for 500 patients from model

(15) with φ1i = β10 + α1i, φ2i = β20 + α2i and φ3i = β30 + α3i, αi ∼ N(0,D),

Y ∼ N(f(t), σ2). The variance-covariance matrix D of the random effects was

chosen to be D = vech(0.6, 0.01,−0.01, 0.6, 0.01, 0.3). We kept 7 measurement

points as in the original analyzed data set as well as the nonequal distances between

them. The variance of the measurement error σ2 was chosen to be 0.25, 1 and 25.

Survival times were simulated for each patient using the exponential model with the

rate parameter equal exp(λ), where λ:

λ = γ1 exp(φ1) + γ2 exp(φ2) + γ3 exp(φ3).

We considered scenarios with fixed coefficients γ1 = 0.5, γ2 = 0.5 and γ3 = −0.2.

The censoring mechanism was simulated independently using an exponential dis-

tribution Exp(λC). Parameter λC was changed in order to control proportion of

censored observations. Different scenarios with 40% and 20% of censoring were ex-

amined . For each simulated data set we fitted four survival models, namely the

gold standard model that uses the true simulated values φi, the plug-in model, the

sampling model and fully Bayesian joint model. Neither nonparametric Cox nor

piecewise constant hazard model were considered in a fully Bayesian approach since

we have simulated the data from the parametric exponential model and wanted to

compare the proposed two-stage approach with the “best” fully Bayesian model. All
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the prior settings, size of burn-in, number of iterations etc. for the fully Bayesian

model were the same as for the real data analysis.

5.2. Results

In Table 3 we present the average results for 200 simulations of different scenarios

are presented. The results from our sampling model were very close to the results

obtained for the fully Bayesian model with slightly smaller bias and RMSE for the

fully Bayesian approach. That was due to the better estimation of random effects

variability in fully Bayesian approach. The plug-in method produced the biggest

bias that sometimes with combination with the small variability of the estimates

around the biased mean resulted in larger RMSE than in sampling approach. As

the measurement error or the percentage of censored observations increased, the es-

timates of survival submodel were more biased with larger RMSE for all approaches.

The increase in bias was more severe when the measurement error variance was in-

creased rather than when the percentage of to censoring was higher. This bias was

however decreased when the number of repeated measures per individual was in-

creased. This has to do with the amount of information that is available in the data

for the estimation of φ̂i. As it is known from the standard mixed models literature

[26], the degree of shrinkage in the subject-specific predicted values is proportional

to σ and inversely proportional to ni and σα. To compare the relation between

variance of the random effects and variance of the measurement error, one can use

intra class correlation (ICC) defined as the proportion of the total variability that

is explained by the clustering with a given random effect. ICC was similar for the

simulated and the real data for the biggest σ and increased in a simulation data as

σ decreased.

Since the calculations for the simulation study were highly computationally in-

tensive we have used the cluster with about 20 nodes with AMD Quad-Core Opteron

835X, 4 x 2GHz and 16GB RAM per node. The analysis for the the 200 simulated
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data sets for a single scenario took about 65.5 hours using the Bayesian approach

and 31.2 hours using the two-stage approach.

6. Discussion

We have proposed a two-stage method that can be used in a joint analysis of lon-

gitudinal and time to event data when the longitudinal data are collected before

the start of follow-up for survival and the interest is in estimation of the impact of

longitudinal profiles on survival. The modeling strategy is based on specification

of two separate submodels for the longitudinal and time to event data. First the

longitudinal outcome is modeled using a random effects model. Then the survival

outcome is modeled using the Empirical Bayes estimates of the subject specific ef-

fects from the first stage. The variability of the estimates from the first stage is

properly taken into account using a Monte Carlo approach by sampling from the

posterior distribution of the random effects given the data.

As it was demonstrated, ignoring the additional variability of the subject-specific

estimates when modeling survival leads to some bias, and in particular, attenuates

the regression coefficients towards zero [4]. That was also confirmed by our simula-

tion study. In comparison with the fully Bayesian approach, the proposed partially

Bayesian method produced similar results with substantially less number of itera-

tions required. This is due to the fact that sampling was conducted already around

the EB estimates and there is no needed for a burn-in part as in a standard fully

Bayesian approach. We used 10000 iterations per subject, which was about the size

of burn-in needed in the fully Bayesian models. No thinning was used in our ap-

proach, based on the visual inspection of the trace plots. Though it is hard compare

the fully Bayesian approach and the two-stage approach with respect to the com-

putational time precisely, the rough approximation of the total computational time

required for the two-stage approach was about half in comparison with the fully
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Table 3: Bias and Residual Mean Squared Error (RMSE) for the method with true φi

(GS), Empirical Bayes estimates φ̂i (Plug-in), sampled φi and fully Bayesian approach

7 time points

% censoring 20 40

σ 0.5

γ1 γ2 γ3 γ1 γ2 γ3

GS 0.00(0.04) -0.02(0.03) 0.01(0.03) -0.01(0.04) 0.02(0.04) -0.02(0.04)

plug-in -0.05(0.06) -0.04(0.05) 0.06(0.07) -0.08(0.09) -0.04(0.05) 0.12(0.12)

sampling -0.04(0.05) 0.03(0.08) 0.02(0.07) -0.05(0.11) -0.02(0.06) 0.03(0.10)

Bayesian -0.03(0.04) -0.02(0.04) 0.01(0.02) -0.01(0.04) -0.02(0.04) 0.02(0.07)

σ 1

GS 0.04(0.05) 0.04(0.07) -0.03(0.07) -0.05(0.09) -0.04(0.06) -0.03(0.05)

plug-in -0.07(0.08) -0.08(0.09) 0.07(0.09) -0.10(0.12) -0.08(0.09) 0.08(0.11)

sampling -0.07(0.09) -0.06(0.10) -0.02(0.11) -0.05(0.12) 0.05(0.11) -0.03(0.12)

Bayesian 0.01(0.03) 0.05(0.06) -0.03(0.07) 0.05(0.06) 0.04(0.06) -0.04(0.07)

σ 5

GS 0.04(0.06) 0.05(0.06) 0.04(0.08) 0.05(0.10) 0.01(0.05) -0.02(0.06)

plug-in -0.09(0.10) -0.10(0.11) 0.08(0.11) -0.20(0.22) -0.21(0.22) 0.14(0.18)

sampling 0.08(0.13) 0.06(0.12) -0.05(0.12) 0.07(0.14) -0.05(0.13) -0.11(0.18)

Bayesian 0.09(0.10) 0.05(0.09) -0.09(0.10) -0.09(0.10) 0.08(0.12) -0.12(0.18)

14 time points

% censoring 20 40

σ 0.5

γ1 γ2 γ3 γ1 γ2 γ3

GS -0.03(0.03) 0.00(0.02) -0.02(0.03) 0.02(0.03) -0.03(0.04) 0.02(0.04)

plug-in -0.02(0.03) -0.03(0.04) 0.05(0.07) -0.02(0.04) -0.03(0.04) 0.05(0.06)

sampling 0.03(0.04) 0.02(0.06) 0.02(0.07) 0.02(0.04) 0.04(0.05) 0.02(0.08)

Bayesian -0.03(0.04) -0.02(0.04) -0.02(0.04) 0.02(0.04) 0.03(0.04) -0.05(0.06)

σ 1

GS -0.03(0.04) -0.03(0.04) -0.01(0.03) 0.00(0.03) -0.02(0.04) 0.05(0.06)

plug-in -0.09(0.06) -0.05(0.06) 0.06(0.07) -0.02(0.04) -0.04(0.05) 0.11(0.11)

sampling 0.04(0.08) 0.02(0.08) -0.02(0.07) -0.02(0.04) -0.02(0.08) 0.04(0.09)

Bayesian -0.03(0.04) 0.04(0.05) -0.03(0.05) 0.02(0.04) 0.03(0.05) 0.06(0.07)

σ 5

GS -0.03(0.04) -0.03(0.04) 0.01(0.04) -0.01(0.04) -0.02(0.04) 0.05(0.06)

plug-in -0.05(0.06) -0.10(0.11) 0.07(0.09) -0.10(0.11) -0.09(0.10) 0.11(0.12)

sampling 0.04(0.09) 0.04(0.11) -0.05(0.11) 0.07(0.12) 0.05(0.11) -0.06(0.16)

Bayesian 0.03(0.05) 0.03(0.08) -0.05(0.10) 0.02(0.04) 0.06(0.10) -0.09(0.14)
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Bayesian approach. The fully Bayesian approach provided similar results with the

two-stage approach for the special setting we have considered here. However fitting

a fully Bayesian model was a bit of “overdone” in the sense that by design the lon-

gitudinal data could not be affected by the survival. Since in many transplantation

studies the longitudinal data are collected before the start of follow-up for survival,

therefore using our method in that cases seems to be more appropriate than using

a fully Bayesian approach. We recommend the proposed approach not only for the

particular transplantation studies but in any setting that shares the similarity of

the separated follow-up periods for the two analyzed endpoints. That is for example

when the event process does not carry any information for the longitudinal outcome

and the condition (10) from Section 3.2 holds. The simulation results indicate that

even if the data come from the real joint setting in which (10) may not hold, the

proposed two-stage procedure can be comparable to the fully Bayesian approach.

Since the sampling in the proposed method relies strongly on the results of the

first part, the accurate estimation of all parameters of nonlinear mixed model is a

key feature and should be performed carefully. This can be a problematic when the

deviation from normality of the random effects is suspected. However it was shown

that even for the non-normal random effects one can still use a standard software

such as nlmixed in SAS with just a small change in a standard program code.

In such cases the probability integral transformation (PIT) proposed by Nelson et

al.[27] can be used or the reformulation of the likelihood proposed by Liu and Yu

[28]. An alternative is fitting a Bayesian model only to estimate the longitudinal

submodel in the first stage, instead of the likelihood methods. Fitting nonlinear

mixed models using Bayesian standard software can be however problematic due to

the high nonlinearity in random effects that is caused both by the nonlinear function

of the longitudinal profiles and by the possible restrictions on parameters [29].

In comparison with the two-stage approach proposed by Tsiatis, DeGruttola and

Wulfsohn [5] our method is less computationally intensive since it does not require



26

fitting as many mixed models as there are event times in the data. An alterna-

tive, that is somewhat simpler to implement and does not require any assumption

about the distribution on the underlying random effects, is the conditional score

approach proposed by Tsiatis and Davidian [11]. However this method is less effi-

cient than the methods based on likelihood. The focus in the discussed approaches

is on the association between the longitudinal and event time processes. However in

transplantation studies when the two follow-up periods for longitudinal and survival

outcomes are often separated the interest is rather in making an inference on the

marginal event-time distribution. This is similar to the Bayesian approach proposed

by Xu and Zeger [12], that uses the longitudinal data as auxiliary information or

surrogate for time-to-event data. Our approach is particulary useful in this setting.

Since each of the two submodels is fitted separately, a standard software can be

used to implement our method with just a small part of additional programming for

Monte Carlo sampling.

Another advantage of the proposed two-stage method is that it can be easily

generalized from survival to other types of models as it was applied for the binary

Delayed Graft Failure (DGF) indicator (results not shown) in the analysis of the

renal data. For that purpose in the second step of the two-stage procedure the

survival model was replaced by the logistic regression model for the DGF indica-

tor. The first stage of the proposed approach could be also modified allowing for

other types of longitudinal response and other types of mixed models. Therefore

instead of using a nonlinear mixed model a linear mixed model or generalized linear

mixed model (GLMMs) can be considered depending on the type and the shape of

the longitudinal response. In the presented real data example we have chosen the

three parameters that described the evolution of the longitudinal response. How-

ever for the particular question of interest one can easily choose the most convenient

parametrization for the longitudinal model and use the selected parameters to ana-

lyze the non-longitudinal response in the second stage.
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